Page 95 - JCAU-5-3
P. 95

Journal of Chinese
            Architecture and Urbanism                                                      Regenerative algal futures



            References                                            International Conference on Environmental Systems.

            Anderson, M.S., Ewert, M.K. & Keener, J.F. (2018). Life support   Dominoni, A. (2020).  Design of Supporting Systems for Life in
               baseline values  and  assumptions  document  (No. NASA/  Outer Space: A Design Perspective on Space Missions Near
               TP-2015-218570/REV1).                              Earth and Beyond. Germany: Springer Nature.
            Armstrong, R. A., editor. (2016). Star Ark: A Living, Self-sustaining   Elrayies, G. M. (2018). Microalgae: Prospects for greener future
               Spaceship. Germany: Springer.                      buildings.  Renewable and Sustainable Energy Reviews,
                                                                  81:1175-1191.
            Bostrom, N. (2019). The vulnerable world hypothesis.  Global
               Policy, 10(4):455-476.                             https://doi.org/10.1016/j.rser.2017.08.032
               https://doi.org/10.1111/1758-5899.12718         Escobar,  C.,  &  Nabity,  J.  (2017).  Past,  Present,  and  Future  of
                                                                  Closed Human Life Support Ecosystems-a Review. In:
            Bostrom, N., & Ćirković, M. M., editors. (2020).  Global   47  International Conference on Environmental Systems.
                                                                    th
               Catastrophic Risks. Oxford: Oxford University Press.
                                                               Fahrion, J., Mastroleo, F., Dussap, C. G., & Leys, N. (2021). Use
            Braidotti, R. (2013). Posthuman relational subjectivity and the   of photobioreactors in regenerative life support systems
               politics of affirmation. In: Relational Architectural Ecologies.   for human space exploration.  Frontiers in Microbiology,
               Milton Park: Routledge, p. 21-39.                  12:699525.
            Caldwell, G. S., In-na, P., Hart, R., Sharp, E., Stefanova, A.,      https://doi.org/10.3389/fmicb.2021.699525
               Pickersgill, M., et al. (2021). Immobilising microalgae and
               Cyanobacteria as biocomposites: New opportunities to   Fong, K. (2013).  Extremes: Life, Death and the Limits of the
               intensify algae biotechnology and bioprocessing. Energies,   Human Body. France: Hachette UK.
               14(9):2566.                                     Furfaro, R., Sadler, P., & Giacomelli, G. A. (2016). Mars-lunar
               https://doi.org/10.3390/en14092566                 Greenhouse (M-LGH) Prototype for Bioregenerative
                                                                  Life Support Systems in Future Planetary Outposts. In:
            Cohen, J. E., & Tilman, D. (1996). Biosphere 2 and biodiversity:   Proceedings of the International Astronautical Congress, IAC.
               The lessons so far. Science, 274(5290):1150-1151.
                                                                  France: International Astronautical Federation, IAF.
               https://doi.org/10.1126/science.274.5290.1150
                                                               Gilbert, S. F., Sapp, J., & Tauber, A. I. (2012). A symbiotic view of
            Darnell, A., Azad, A., Borlaug, B., Case, D., Chamberlain, C.,   life: We have never been individuals. The Quarterly Review
               Fortier, K.,  et al. (2015). MarsOASIS: A  Predeployable   of Biology, 87(4):325-341.
               Miniature Martian Greenhouse for Crop Production      https://doi.org/10.1086/668166
               Research. In: 45  International Conference on Environmental
                           th
               Systems.                                        Häder, D. P. (2020). On the way to mars-flagellated algae in
                                                                  bioregenerative life support systems under microgravity
            De Tommasi, E., Gielis, J., & Rogato, A. (2017). Diatom frustule   conditions. Frontiers in Plant Science, 10:1621.
               morphogenesis and function: A  multidisciplinary survey.
               Marine Genomics, 35:1-18.                          https://doi.org/10.3389/fpls.2019.01621
               https://doi.org/10.1016/j.margen.2017.07.001    Häder, D. P., & Hemmersbach, R. (2017). Gravitaxis in Euglena.
                                                                  In: Euglena: Biochemistry, Cell and Molecular Biology. Cham:
            Dempster, W. F., & Allen, J. P. (2008). Integration of lessons from
               recent research for “Earth to Mars” life support systems.   Springer, p. 237-266.
               Advances in Space Research, 41(5):675-683.         https://doi.org/10.1007/978-3-319-54910-1_11
               https://doi.org/10.1016/j.asr.2007.02.075       Häder, D. P., Braun, M., Grimm, D., & Hemmersbach, R. (2017).
                                                                  Gravireceptors in eukaryotes-a comparison of case studies
            Detrell, G. (2021). Chlorella vulgaris photobioreactor for oxygen
               and food production on a moon base-potential and   on the cellular level. NPJ Microgravity, 3(1):13.
               challenges. Frontiers in Astronomy and Space Sciences, 8:124.      https://doi.org/10.1038/s41526-017-0018-8.
               https://doi.org/10.3389/fspas.2021.700579       Haraway, D. (2016).  Staying with the Trouble. Durham:  Duke
                                                                  University Press, p. 97.
            Detrell,  G.,  Helisch,  H.,  Keppler,  J.,  Martin,  J.,  Henn,  N.,
               Fasoulas, S.,  et al. (2020a). PBR@ LSR: The Algae-based   Hauslage, J., Strauch, S. M., Eßmann, O., Haag, F. W. M.,
               Photobioreactor Experiment at the ISS-operations and   Richter, P., Krüger, J., et al. (2018). Eu: CROPIS-“Euglena
               Results. In: 2020 International Conference on Environmental   gracilis: Combined regenerative organic-food production
               Systems.                                           in space”-a space experiment testing biological life support
                                                                  systems under lunar and Martian gravity.  Microgravity
            Detrell, G., Keppler, J., Helisch, H., Martin, J., Henn, N., Ewald, R.,
               et al. (2020b). PBR@ LSR: The Algae-based Photobioreactor   Science and Technology, 30:933-942.
               Experiment at the ISS-operations and Results. In:  2020      https://doi.org/10.1007/s12217-018-9654-1


            Volume 5 Issue 3 (2023)                         13                        https://doi.org/10.36922/jcau.179
   90   91   92   93   94   95   96   97   98   99   100