Page 96 - JCAU-5-3
P. 96
Journal of Chinese
Architecture and Urbanism Regenerative algal futures
Helisch, H., Belz, S., Keppler, J., Detrell, G., Henn, N., Fasoulas, S., Giannakopoulos, S., et al. (2020). Robotic extrusion of
et al. (2018). Non-axenic Microalgae Cultivation in algae‐laden hydrogels for large‐scale applications. Global
Space-challenges for the Membrane µgPBR of the ISS Challenges, 4(1):1900064.
th
Experiment PBR@ LSR. In: 48 International Conference on https://doi.org/10.1002/gch2.201900064
Environmental Systems.
Mapstone, L. J., Leite, M. N., Purton, S., Crawford, I. A., &
Helisch, H., Keppler, J., Detrell, G., Belz, S., Ewald, R., Dartnell, L. (2022). Cyanobacteria and microalgae in
Fasoulas, S., et al. (2020). High density long-term cultivation supporting human habitation on Mars. Biotechnology
of Chlorella vulgaris SAG 211-12 in a novel microgravity- Advances, 59:107946.
capable membrane raceway photobioreactor for future
bioregenerative life support in SPACE. Life Sciences in Space https://doi.org/10.1016/j.biotechadv.2022.107946
Research, 24:91-107. Margulis, L. (2008). Symbiotic Planet: A New Look at Evolution.
https://doi.org/10.1016/j.lssr.2019.08.001 United States: Basic Books.
Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F., Marino, B. & Odum, H. (1999). Biosphere 2. Introduction and
Morin, N., Wilmotte, A., et al. (2006). Microbial ecology research progress. Ecological Engineering. 13(1-4): 3–14.
of the closed artificial ecosystem MELiSSA (Micro- Martin, W. F. (2017). Physiology, anaerobes, and the origin of
ecological Life Support System Alternative): Reinventing mitosing cells 50 years on. Journal of Theoretical Biology,
and compartmentalizing the Earth’s food and oxygen 434:2-10.
regeneration system for long-haul space exploration
missions. Research in Microbiology, 157:77-86. https://doi.org/10.1016/j.jtbi.2017.01.004
Matula, E. E., & Nabity, J. A. (2019). Failure modes, causes, and
https://doi.org/10.1016/j.resmic.2005.06.014
effects of algal photobioreactors used to control a spacecraft
Hogle, M., Imhof, B., Hoheneder, W., Armstrong, R., Ieropoulos, I., environment. Life Sciences in Space Research (Amst),
Wallis, L., et al. (2023). Living architecture: Metabolic 20:35-52.
applications for next-generation, selectively programmable
bioreactors. In: Urban and Regional Agriculture. Cambridge: https://doi.org/10.1016/j.lssr.2018.12.001
Academic Press, pp. 595-614. MELiSSA Foundation. (2020). Available from: https://www.
melissafoundation.org/page/melissa-pilot-plant [Last
Hume, B. C. C., D’Angelo, C., Smith, E. G., Stevens, J. R., Burt, J., accessed on 2023 Jul 20].
& Wiedenmann, J. (2015). Symbiodinium thermophilum sp.
nov., a thermotolerant symbiotic alga prevalent in corals of Nelson, N. (2011). Photosystems and global effects of
the world’s hottest sea, the Persian/Arabian Gulf. Scientific oxygenic photosynthesis. Biochimica et Biophysica Acta,
Reports, 5(1):8562. 1807(8):856-863.
https://doi.org/10.1038/srep08562 https://doi.org/10.1016/j.bbabio.2010.10.011
Hüpkes, P., & Dürbeck, G. (2022). The technical non-reproducibility Němcová, Y., & Kalina, T. (2000). Cell wall development,
of the Earth system: Scale, Biosphere 2, and T.C. Boyle’s microfibril and pyrenoid structure in type strains of
terranauts. The Anthropocene Review, 9(2):161-174. Chlorella vulgaris, C. kessleri, C. sorokiniana compared with
C. luteoviridis (Trebouxiophyceae, Chlorophyta). Archiv für
https://doi.org/10.1177/20530196211048935 Hydrobiologie Supplement Volumes, 100:95-106.
Lakaniemi, A. M., Hulatt, C. J., Wakeman, K. D., Thomas, D. N., & https://doi.org/10.1127/algol_stud/100/2000/95
Puhakka, J. A. (2012). Eukaryotic and prokaryotic microbial
communities during microalgal biomass production. Niederwieser, T. (2018). Analysis of Factors Affecting the
Bioresource Technology, 124:387-393. Implementation of an Algal Photobioreactor into a Spacecraft
Life Support System. Ann Arbor, Michigan: ProQuest
https://doi.org/10.1016/j.biortech.2012.08.048 Dissertations Publishing.
Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K., Niederwieser, T., Kociolek, P., & Klaus, D. (2018). A review of
Saltzman, M. R., et al. (2016). Earliest land plants created algal research in space. Acta Astronautica, 146:359-367.
modern levels of atmospheric oxygen. Proceedings of the
National Academy of Sciences of the United States of America, https://doi.org/10.1016/j.actaastro.2018.03.026
113(35):9704-9709. Olson, R. L., Oleson, M. W., & Slavin, T. J. (1988). CELSS for
https://doi.org/10.1073/pnas.1604787113 advanced manned mission. HortScience, 23(2):275-286.
Lewis, S. L., & Maslin, M. A. (2018). Human Planet: How we https://doi.org/10.21273/hortsci.23.2.275
Created the Anthropocene. United Kingdom: Yale University Pazar, C. C. (2020). Resource utilization on mars. Journal of
Press. Geophysical Research, 124:12.
Malik, S., Hagopian, J., Mohite, S., Lintong, C., Stoffels, L., Pennisi, E. (2017). Making waves. Science, 355:1006-1009.
Volume 5 Issue 3 (2023) 14 https://doi.org/10.36922/jcau.179

