Page 96 - JCAU-5-3
P. 96

Journal of Chinese
            Architecture and Urbanism                                                      Regenerative algal futures



            Helisch, H., Belz, S., Keppler, J., Detrell, G., Henn, N., Fasoulas, S.,   Giannakopoulos, S.,  et  al. (2020). Robotic extrusion of
               et al.  (2018). Non-axenic  Microalgae  Cultivation in   algae‐laden hydrogels for large‐scale applications.  Global
               Space-challenges for the Membrane  µgPBR of the ISS   Challenges, 4(1):1900064.
                                     th
               Experiment PBR@ LSR. In: 48  International Conference on      https://doi.org/10.1002/gch2.201900064
               Environmental Systems.
                                                               Mapstone, L. J., Leite, M. N., Purton, S., Crawford, I. A., &
            Helisch,  H.,  Keppler,  J.,  Detrell,  G.,  Belz,  S.,  Ewald,  R.,   Dartnell, L. (2022).  Cyanobacteria and microalgae in
               Fasoulas, S., et al. (2020). High density long-term cultivation   supporting human habitation on Mars.  Biotechnology
               of Chlorella vulgaris SAG 211-12 in a novel microgravity-  Advances, 59:107946.
               capable membrane raceway photobioreactor for future
               bioregenerative life support in SPACE. Life Sciences in Space      https://doi.org/10.1016/j.biotechadv.2022.107946
               Research, 24:91-107.                            Margulis, L. (2008). Symbiotic Planet: A New Look at Evolution.
               https://doi.org/10.1016/j.lssr.2019.08.001         United States: Basic Books.
            Hendrickx, L., De Wever, H., Hermans, V., Mastroleo, F.,   Marino, B. & Odum, H. (1999). Biosphere 2. Introduction and
               Morin,  N., Wilmotte, A.,  et al. (2006). Microbial ecology   research progress. Ecological Engineering. 13(1-4): 3–14.
               of the closed artificial ecosystem MELiSSA (Micro-  Martin, W. F. (2017). Physiology, anaerobes, and the origin of
               ecological Life Support System Alternative): Reinventing   mitosing cells 50  years on.  Journal of Theoretical Biology,
               and compartmentalizing the Earth’s food and oxygen   434:2-10.
               regeneration  system  for  long-haul  space  exploration
               missions. Research in Microbiology, 157:77-86.      https://doi.org/10.1016/j.jtbi.2017.01.004
                                                               Matula, E. E., & Nabity, J. A. (2019). Failure modes, causes, and
               https://doi.org/10.1016/j.resmic.2005.06.014
                                                                  effects of algal photobioreactors used to control a spacecraft
            Hogle, M., Imhof, B., Hoheneder, W., Armstrong, R., Ieropoulos, I.,   environment.  Life Sciences in Space Research  (Amst),
               Wallis,  L.,  et al. (2023). Living architecture: Metabolic   20:35-52.
               applications for next-generation, selectively programmable
               bioreactors. In: Urban and Regional Agriculture. Cambridge:      https://doi.org/10.1016/j.lssr.2018.12.001
               Academic Press, pp. 595-614.                    MELiSSA Foundation. (2020). Available from: https://www.
                                                                  melissafoundation.org/page/melissa-pilot-plant  [Last
            Hume, B. C. C., D’Angelo, C., Smith, E. G., Stevens, J. R., Burt, J.,   accessed on 2023 Jul 20].
               & Wiedenmann, J. (2015). Symbiodinium thermophilum sp.
               nov., a thermotolerant symbiotic alga prevalent in corals of   Nelson,  N.  (2011).  Photosystems  and  global  effects  of
               the world’s hottest sea, the Persian/Arabian Gulf. Scientific   oxygenic photosynthesis.  Biochimica et Biophysica Acta,
               Reports, 5(1):8562.                                1807(8):856-863.
               https://doi.org/10.1038/srep08562                  https://doi.org/10.1016/j.bbabio.2010.10.011
            Hüpkes, P., & Dürbeck, G. (2022). The technical non-reproducibility   Němcová, Y., & Kalina, T. (2000). Cell wall development,
               of the Earth system: Scale, Biosphere 2, and T.C. Boyle’s   microfibril and pyrenoid structure in type strains of
               terranauts. The Anthropocene Review, 9(2):161-174.   Chlorella vulgaris, C. kessleri, C. sorokiniana compared with
                                                                  C. luteoviridis (Trebouxiophyceae, Chlorophyta). Archiv für
               https://doi.org/10.1177/20530196211048935          Hydrobiologie Supplement Volumes, 100:95-106.
            Lakaniemi, A. M., Hulatt, C. J., Wakeman, K. D., Thomas, D. N., &      https://doi.org/10.1127/algol_stud/100/2000/95
               Puhakka, J. A. (2012). Eukaryotic and prokaryotic microbial
               communities during microalgal biomass production.   Niederwieser, T. (2018).  Analysis of Factors Affecting the
               Bioresource Technology, 124:387-393.               Implementation of an Algal Photobioreactor into a Spacecraft
                                                                  Life Support System. Ann Arbor, Michigan: ProQuest
               https://doi.org/10.1016/j.biortech.2012.08.048     Dissertations Publishing.
            Lenton, T. M., Dahl, T. W., Daines, S. J., Mills, B. J. W., Ozaki, K.,   Niederwieser, T., Kociolek, P., & Klaus, D. (2018). A review of
               Saltzman, M. R., et al. (2016). Earliest land plants created   algal research in space. Acta Astronautica, 146:359-367.
               modern levels of atmospheric oxygen.  Proceedings of the
               National Academy of Sciences of the United States of America,      https://doi.org/10.1016/j.actaastro.2018.03.026
               113(35):9704-9709.                              Olson, R. L., Oleson, M. W., & Slavin, T. J. (1988). CELSS for
               https://doi.org/10.1073/pnas.1604787113            advanced manned mission. HortScience, 23(2):275-286.
            Lewis, S. L., & Maslin, M. A. (2018).  Human  Planet:  How  we      https://doi.org/10.21273/hortsci.23.2.275
               Created the Anthropocene. United Kingdom: Yale University   Pazar, C. C. (2020). Resource utilization on mars. Journal of
               Press.                                             Geophysical Research, 124:12.
            Malik,  S.,  Hagopian,  J.,  Mohite,  S.,  Lintong,  C.,  Stoffels,  L.,   Pennisi, E. (2017). Making waves. Science, 355:1006-1009.


            Volume 5 Issue 3 (2023)                         14                        https://doi.org/10.36922/jcau.179
   91   92   93   94   95   96   97   98   99   100   101