Page 33 - JCTR-11-4
P. 33

Journal of Clinical and
            Translational Research                                                  Propranolol as a treatment for HCC



               Virology. 2012;422(2):377-385.                     doi: 10.1523/JNEUROSCI.2574-04.2004
               doi: 10.1016/j.virol.2011.11.009                34.  Dobarro M, Orejana L, Aguirre N, Ramírez MJ. Propranolol
                                                                  restores cognitive deficits and improves amyloid and Tau
            23.  Goossens N, Hoshida Y. Hepatitis C virus-induced   pathologies  in  a  senescence-accelerated  mouse  model.
               hepatocellular  carcinoma.  Clin  Mol  Hepatol.    Neuropharmacology. 2013;64:137-44.
               2015;21(2):105-114.
                                                                  doi: 10.1016/j.neuropharm.2012.06.047
               doi: 10.3350/cmh.2015.21.2.105
                                                               35.  Kao J, Luu B. Can propranolol prevent progression of
            24.  Yuan H, Xu R, Li S, et al. The malignant transformation of   melanoma? JAAPA. 2019;32(6):1-5.
               viral hepatitis to hepatocellular carcinoma: Mechanisms and
               interventions. MedComm (2020). 2025;6(3):e70121.     doi: 10.1097/01.JAA.0000558241.84003.91
               doi: 10.1002/mco2.70121                         36.  Xie Y. Hepatitis B virus-associated hepatocellular carcinoma.
                                                                  Adv Exp Med Biol. 2017;1018:11-21.
            25.  He Y, Staschke KA, Tan SL. HCV NS5A: A multifunctional
               regulator of cellular pathways and virus replication. In:      doi: 10.1007/978-981-10-5765-6_2
               Tan SL, editor. Hepatitis C Viruses: Genomes and Molecular   37.  Storch  CH, Hoeger  PH. Propranolol  for  infantile
               Biology. Norfolk (UK): Horizon Bioscience; 2006.   haemangiomas: Insights into the molecular mechanisms of

            26.  Rebbani K, Tsukiyama-Kohara K. HCV-induced oxidative   action. Br J Dermatol. 2010;163(2):269-274.
               stress: Battlefield-winning strategy. Oxid Med Cell Longev.      doi: 10.1111/j.1365-2133.2010.09848.x
               2016;2016:7425628.
                                                               38.  Ji Y, Li K, Xiao X,  et al. Effects of propranolol on the
               doi: 10.1155/2016/7425628                          proliferation and apoptosis of  hemangioma-derived
            27.  Li H, Huang MH, Jiang JD, Peng ZG. Hepatitis C: From   endothelial cells. J Pediatr Surg. 2012;47(12):2216-2223.
               inflammatory  pathogenesis  to  anti-inflammatory/     doi: 10.1016/j.jpedsurg.2012.09.008
               hepatoprotective  therapy.  World  J  Gastroenterol.   39.  Wołowiec Ł, Grześk G, Osiak J,  et al. Beta-blockers in
               2018;24(47):5297-5311.
                                                                  cardiac arrhythmias-Clinical pharmacologist’s point of view.
               doi: 10.3748/wjg.v24.i47.5297                      Front Pharmacol. 2022;13:1043714.
            28.  Zhao H, Wu L, Yan G,  et al. Inflammation and tumor      doi: 10.3389/fphar.2022.1043714
               progression: Signaling pathways and targeted intervention.   40.  Solernó LM, Sobol NT, Gottardo MF, et al. Propranolol blocks
               Signal Transduct Target Ther. 2021;6(1):263.
                                                                  osteosarcoma  cell  cycle  progression,  inhibits  angiogenesis
               doi: 10.1038/s41392-021-00658-5                    and slows xenograft growth in combination with cisplatin-
                                                                  based chemotherapy. Sci Rep. 2022;12(1):15058.
            29.  Zampino R, Marrone A, Restivo L,  et  al. Chronic  HCV
               infection and inflammation: Clinical  impact  on hepatic      doi: 10.1038/s41598-022-18324-3
               and extra-hepatic manifestations.  World J Hepatol.   41.  Fjæstad KY, Rømer AMA, Goitea V, et al. Blockade of beta-
               2013;5(10):528-540.                                adrenergic receptors reduces cancer growth and enhances
               doi: 10.4254/wjh.v5.i10.528                        the response to anti-CTLA4 therapy by modulating the
                                                                  tumor microenvironment. Oncogene. 2022;41(9):1364-1375.
            30.  Dong Y, Tu R, Liu H, Qing G. Regulation of cancer cell
               metabolism:  Oncogenic  MYC  in  the  driver’s  seat.  Signal      doi: 10.1038/s41388-021-02170-0
               Transduct Target Ther. 2020;5(1):124.           42.  Pasquier E, Ciccolini J, Carre M,  et al. Propranolol
               doi: 10.1038/s41392-020-00235-2                    potentiates the anti-angiogenic effects and anti-tumor
                                                                  efficacy of chemotherapy agents: Implication in breast
            31.  Srinivasan AV. Propranolol: A 50-year historical perspective.   cancer treatment. Oncotarget. 2011;2(10):797-809.
               Ann Indian Acad Neurol. 2019;22(1):21-26.
                                                                  doi: 10.18632/oncotarget.343
               doi: 10.4103/aian.AIAN_201_18
                                                               43.  Tu Z, Zhong Y, Hu H, et al. Design of therapeutic biomaterials
            32.  Frishman WH. A historical perspective on the development   to control inflammation. Nat Rev Mater. 2022;7(7):557-574.
               of β-adrenergic blockers. J Clin Hypertens. 2007;9(S4):19-27.
                                                                  doi: 10.1038/s41578-022-00426-z
               doi: 10.1111/j.1524-6175.2007.06633.x
                                                               44.  Afify EA, Andijani NM. Potentiation of morphine-induced
            33.  Roozendaal B, Hahn EL, Nathan SV, de Quervain  DJ,   antinociception by propranolol: The involvement of
               McGaugh JL. Glucocorticoid effects on memory       dopamine and GABA systems. Front Pharmacol. 2017;8:794.
               retrieval require concurrent noradrenergic activity in
               the hippocampus and basolateral amygdala.  J  Neurosci.      doi: 10.3389/fphar.2017.00794
               2004;24(37):8161-8169.                          45.  Admani S, Feldstein S, Gonzalez EM, Friedlander SF.


            Volume 11 Issue 4 (2025)                        27                         doi: 10.36922/JCTR025080010
   28   29   30   31   32   33   34   35   36   37   38