Page 21 - MSAM-2-1
P. 21

Materials Science in Additive Manufacturing                           AM-produced CoCrFeMnNi properties



            5.   Chen S, Tong Y, Liaw PK, 2018, Additive manufacturing of   fusion. Mater Sci Eng A, 760: 481–488.
               high-entropy alloys: A review. Entropy, 20: 937.
                                                               20.  Lee KA, Kim YK, Yu JH, et al., 2017, Effect of heat treatment
               https://doi.org/10.3390/e20120937                  on microstructure and impact toughness of Ti-6Al-4V
                                                                  manufactured by selective laser melting process.  Arch
            6.   Cantor B, Chang ITH, Knight P, et al., 2004, Microstructural
               development in equiatomic multicomponent alloys. Mater   Metallurgy Mater, 62: 1341–1346.
               Sci Eng A, 375: 213–218.                        21.  Krishnadev M, Larouche M, Lakshmanan VI, et al., 2010,
                                                                  Failure analysis of failed wire rope.  J  Failure  Anal Prev,
            7.   Zaddach AJ, Niu C, Koch CC,  et al., 2013, Mechanical
               properties and stacking fault energies of NiFeCrCoMn high-  10: 341–348.
               entropy alloy. JOM, 65: 1780–1789.              22.  Kim JH, Lim KR, Won JW, et al., 2018, Mechanical properties
                                                                  and deformation twinning behavior of as-cast CoCrFeMnNi
            8.   Drissi-Daoudi R, Pandiyan V, Logé R,  et al., 2022,
               Differentiation of materials and laser powder bed fusion   high-entropy alloy at low and high temperatures. Mater Sci
               processing regimes from airborne acoustic emission   Eng A, 712: 108–113.
               combined  with  machine  learning.  Virtual Phys Prototyp,   23.  Xia SQ, Gao MC, Zhang Y, 2018, Abnormal temperature
               17: 181–204.                                       dependence of impact toughness in AlxCoCrFeNi system
                                                                  high entropy alloys. Mater Chem Phys, 210: 213–221.
            9.   Sing SL, 2022, Perspectives on additive manufacturing
               enabled Beta-titanium alloys for biomedical applications.   24.  Bi G, Chew Y, Weng F,  et al., 2018, Process study and
               Int J Bioprint, 8: 478.                            characterization of properties of FeCrNiMnCo high-entropy
                                                                  alloys fabricated by laser-aided additive manufacturing. In:
               https://doi.org/10.18063/ijb.v8i1.478
                                                                  Advanced Laser Processing and Manufacturing II. Vol. 10813.
            10.  Shi J, Wang Y, 2020, Development of metal matrix composites   United States: SPIE. pp. 43–52.
               by laser-assisted additive manufacturing technologies:   25.  Kim YK, Kim MC, Lee KA, 2022, 1.45 GPa ultrastrong
               A review. J Mater Sci, 55: 9883–9917.
                                                                  cryogenic strength with superior impact toughness in the
            11.  Wang Y, Shi J, Liu Y, 2019, Competitive grain growth and   in-situ nano oxide reinforced CrMnFeCoNi high-entropy
               dendrite morphology evolution in selective laser melting of   alloy matrix nanocomposite manufactured by laser powder
               Inconel 718 superalloy. J Cryst Growth, 521: 15–29.  bed fusion. J Mater Sci Technol, 97: 10–19.
            12.  Brif Y, Thomas M, Todd I, 2015, The use of high-entropy   26.  Vaidya M, Guruvidyathri K, Murty BS, 2019, Phase
               alloys in additive manufacturing. Scr Mater, 99: 93–96.  formation and thermal stability of CoCrFeNi and
            13.  Li R, Niu P, Yuan T, et al., 2018, Selective laser melting of an   CoCrFeMnNi equiatomic high entropy alloys.  J  Alloys
               equiatomic CoCrFeMnNi high-entropy alloy: Processability,   Compounds, 774: 856–864.
               non-equilibrium microstructure and mechanical property.   27.  Vaidya M, Anupam A, Bharadwaj JV,  et al., 2019, Grain
               J Alloys Compounds, 746: 125–134.                  growth  kinetics  in  CoCrFeNi  and CoCrFeMnNi high
            14.  Chen P, Li S, Zhou Y, et al., 2020, Fabricating CoCrFeMnNi   entropy alloys processed by spark plasma sintering. J Alloys
               high entropy alloy via selective laser melting in-situ alloying.   Compounds, 791: 1114–1121.
               J Mater Sci Technol, 43: 40–43.                 28.  Laplanche G, Horst O, Otto F, et al., 2015, Microstructural
                                                                  evolution of a CoCrFeMnNi high-entropy alloy after
            15.  Guo J, Goh M, Zhu Z, et al., 2018, On the machining of
               selective laser melting CoCrFeMnNi high-entropy alloy.   swaging and annealing. J Alloys Compounds, 647: 548–557.
               Mater Des, 153: 211–220.                        29.  Sathiaraj GD, Tsai CW, Yeh JW, et al., 2016, The effect of
                                                                  heating rate on microstructure and texture formation during
            16.  Savinov R, Wang Y, Wang J,  et al., 2021, Comparison of
               microstructure and properties of CoCrFeMnNi high-  annealing of heavily cold-rolled equiatomic CoCrFeMnNi
               entropy alloy from selective laser melting and directed   high entropy alloy. J Alloys Compounds, 688: 752–761.
               energy deposition processes. Procedia Manuf, 53: 435–442.  30.  Aiso T, Nishimoto M, Muto I,  et al., 2021, Roles of
                                                                  alloying elements in the corrosion resistance of equiatomic
            17.  Zhang C, Feng K, Kokawa H,  et al., 2020, Cracking
               mechanism and mechanical properties of selective laser   CoCrFeMnNi high-entropy alloy and application to
               melted CoCrFeMnNi high entropy alloy using different   corrosion-resistant alloy design. Mater Trans, 62: 1677–1680.
               scanning strategies. Mater Sci Eng A, 789: 139672.  31.  Pathak S, Kumar N, Mishra RS,  et al., 2019, Aqueous
                                                                  corrosion behavior of cast CoCrFeMnNi alloy. J Mater Eng
            18.  Chew Y, Bi GJ, Zhu ZG, et al., 2019, Microstructure and enhanced
               strength  of laser  aided  additive manufactured  CoCrFeNiMn   Perform, 28: 5970–5977.
               high entropy alloy. Mater Sci Eng A, 744: 137–144.  32.  Peng H, Lin Z, Li R, et al., 2020, Corrosion behavior of an
                                                                  equiatomic CoCrFeMnNi high-entropy alloy-a comparison
            19.  Keshavarz MK, Sikan F, Boutet CE,  et al., 2019, Impact
               properties  of  half  stress-relieved  and  hot  isostatic  pressed   between selective laser melting and cast. Front Mater, 7: 244.
               Ti–6Al–4V components fabricated by laser powder bed   33.  Popescu AMJ, Branzoi F, Burada M, et al., 2022, Influence of


            Volume 2 Issue 1 (2023)                         15                       https://doi.org/10.36922/msam.42
   16   17   18   19   20   21   22   23   24   25   26