Page 22 - MSAM-2-1
P. 22

Materials Science in Additive Manufacturing                           AM-produced CoCrFeMnNi properties



               heat treatment on the corrosion behavior of electrodeposited   and spatter signatures on melted states in selective laser
               CoCrFeMnNi high-entropy alloy thin films. Coatings, 12; 1108.  melting. Optics Laser Technol, 111: 395–406.
               https://doi.org/10.3390/coatings12081108        48.  Dai S, Zhu H, Zeng X, 2020, Effect of line energy density
                                                                  and wall thickness on the top surface quality of AlSi10Mg
            34.  Melia MA, Carroll JD, Whetten SR, et al., 2019, Mechanical
               and corrosion properties of additively manufactured   sample fabricated via selective laser melting. In: IOP Conf
                                                                  Ser Mater Sci Eng, 774: 012088.
               CoCrFeMnNi high entropy alloy. Addit Manuf, 29: 100833.
                                                               49.  Pal S, Lojen G, Hudak R, et al., 2020, As-fabricated surface
            35.  Kong D, Wang L, Zhu G, et al., 2023, Heat treatment effects
               on the metastable microstructure, mechanical property and   morphologies of Ti-6Al-4V samples fabricated by different
               corrosion behavior of Al-added CoCrFeMnNi alloys fabricated   laser processing parameters in selective laser melting. Addit
               by laser powder bed fusion. J Mater Sci Technol, 138: 171–182.  Manuf, 33: 101147.
                                                               50.  Xiang S, Luan H, Wu J,  et al., 2019, Microstructures and
            36.  Ren J, Mahajan C, Liu L, et al., 2019, Corrosion behavior
               of selectively laser melted CoCrFeMnNi high entropy alloy.   mechanical properties of CrMnFeCoNi high entropy alloys
               Metals, 9: 1029.                                   fabricated using laser metal deposition technique. J Alloys
                                                                  Compounds, 773: 387–392.
            37.  Wang B, Sun M, Li B, et al., 2020, Anisotropic response of
               CoCrFeMnNi high-entropy alloy fabricated by selective   51.  Wang Q, Amar A, Jiang C, et al., 2020, CoCrFeNiMo0. 2
               laser melting. Materials, 13: 5687.                high entropy alloy by laser melting deposition: Prospective
                                                                  material for low temperature and corrosion resistant
               https://doi.org/10.3390/ma13245687                 applications. Intermetallics, 119: 106727.
            38.  Xu  Z,  Zhang  H,  Du  X,  et al.,  2020,  Corrosion  resistance   52.  Bian P, Shi J, Liu Y, et al., 2020, Influence of laser power and
               enhancement of CoCrFeMnNi high-entropy alloy fabricated   scanning strategy on residual stress distribution in additively
               by additive manufacturing. Corrosion Sci, 177: 108954.  manufactured 316L steel. Optics Laser Technol, 132: 106477.
            39.  Xiang S, Yuan Y, Zhang C, et al., 2022, Effects of process   53.  Joseph J, Stanford N, Hodgson P,  et al., 2017, Tension/
               parameters on the corrosion resistance and biocompatibility   compression  asymmetry  in  additive  manufactured  face
               of Ti6Al4V parts fabricated by selective laser melting. ACS   centered cubic high entropy alloy. Scripta Mater, 129: 30–34.
               Omega, 7: 5954–5961.
                                                               54.  Wang Y, Shi J, Lu S, et al., 2017, Selective laser melting of
            40.  Cacace S, Semeraro Q, 2022, Fast optimisation procedure for   graphene-reinforced Inconel 718 superalloy: evaluation of
               the selection of L-PBF parameters based on utility function.   microstructure and tensile performance. J Manuf Sci Eng,
               Virtual Phys Prototyp, 17: 125–137.                139: 041005.
            41.  Gong X, Zeng D, Groeneveld-Meijer W,  et  al., 2022,   55.  Ratanaphan S, Yoon Y, Rohrer GS, 2014, The five parameter
               Additive manufacturing: A  machine learning model of   grain boundary character distribution of polycrystalline
               process-structure-property linkages for machining behavior   silicon. J Mater Sci, 49: 4938–4945.
               of Ti-6Al-4V. Mater Sci Addit Manuf, 1: 6.
                                                               56.  Bachmann  F,  Hielscher  R,  Schaeben  H,  2010,  Texture
            42.  Lu  C,  Shi  J,  2022,  Relative  density  and  surface  roughness   analysis with MTEX–free and open source software toolbox.
               prediction for Inconel 718 by selective laser melting: Central   In: Solid State Phenomena. Vol. 160. Switzerland: Trans Tech
               composite design and multi-objective optimization.  Int J   Publications Ltd. pp. 63–68.
               Adv Manuf Technol, 119: 3931–3949.
                                                               57.  Wright S, 2014, Time for a Change-New Perspectives in
            43.  Davis JR, 1998, Metals Handbook. Handbook Committee.   Grain Size Analysis. Available from: https://www.edaxblog.
               Netherlands: ASM International.                    com/2014/06/23/time-for-a-change-new-perspectives-in-
                                                                  grain-size-analysis [Last accessed on 2023 Jan 10].
            44.  Maitra V, Shi J, Lu C, 2022, Robust prediction and validation
               of as-built density of Ti-6Al-4V parts manufactured via   58.  He X, DebRoy T, Fuerschbach PW, 2003, Alloying element
               selective laser melting using a machine learning approach.   vaporization during laser spot  welding of stainless steel.
               J Manuf Processes, 78: 183–201.                    J Phys D Appl Phys, 36: 3079.
            45.  Cherry JA, Davies HM, Mehmood S, et al., 2015, Investigation   59.  Alcock CB, Itkin VP, Horrigan MK, 1984, Vapour pressure
               into the effect of process parameters on microstructural and   equations for the metallic elements: 298–2500K.  Can
               physical properties of 316L stainless steel parts by selective   Metallurgical Q, 23: 309–313.
               laser melting. Int J Adv Manuf Technol, 76: 869–879.
                                                               60.  Mouanga M, Berçot P, 2010, Comparison of corrosion
            46.  Bai Y, Yang Y, Wang D, et al., 2017, Influence mechanism   behaviour of zinc in NaCl and in NaOH solutions; Part II:
               of parameters process and mechanical properties evolution   Electrochemical analyses. Corrosion Sci, 52: 3993–4000.
               mechanism of maraging steel 300 by selective laser melting.   61.  Collazo A, Figueroa R, Pérez C, et al., 2022, Effect of laser
               Mater Sci Eng A, 703: 116–123.
                                                                  speed and hatch spacing on the corrosion behavior of 316L
            47.  Ye D, Zhu K, Fuh JY, et al., 2019, The investigation of plume   stainless steel produced by selective laser melting. Materials,


            Volume 2 Issue 1 (2023)                         16                       https://doi.org/10.36922/msam.42
   17   18   19   20   21   22   23   24   25   26   27