Page 95 - MSAM-3-1
P. 95
Materials Science in Additive Manufacturing Bioactive hydrogels for 3D bioprinting
for insulin drug delivery. Adv Mat Res. 2014;829:251-257. 50. Homaeigohar S, Li M, Boccaccini AR. Bioactive glass-based
doi: 10.4028/www.scientific.net/AMR.829.251 fibrous wound dressings. Burns Trauma. 2022;10:tkac038.
43. Mehrabi T, Mesgar AS, Mohammadi Z. Bioactive glasses: doi: 10.1093/burnst/tkac038
A promising therapeutic ion release strategy for enhancing 51. Ouyang L, Yao R, Zhao Y, Sun W. Effect of bioink properties
wound healing. ACS Biomater Sci Eng. 2020;6(10):5399-5430. on printability and cell viability for 3D bioplotting of
doi: 10.1021/acsbiomaterials.0c00528 embryonic stem cells. Biofabrication. 2016;8(3):035020.
44. Solanki AK, Lali FV, Autefage H, et al. Bioactive glasses and doi: 10.1088/1758-5090/8/3/035020
electrospun composites that release cobalt to stimulate the 52. Kyle S, Jessop ZM, Al-Sabah A, Whitaker IS. ‘Printability’
HIF pathway for wound healing applications. Biomater Res. of candidate biomaterials for extrusion based 3D printing:
2021;25(1):1. State-of-the-art. Adv Healthc Mater. 2017;6(16):1700264.
doi: 10.1186/s40824-020-00202-6 doi: 10.1002/adhm.201700264
45. Chen YH, Rao ZF, Liu YJ, et al. Multifunctional injectable 53. Cano-Vicent A, Tuñón-Molina A, Bakshi H, et al.
hydrogel loaded with cerium-containing bioactive glass Biocompatible alginate film crosslinked with Ca and Zn
2+
2+
nanoparticles for diabetic wound healing. Biomolecules. possesses antibacterial, antiviral, and anticancer activities.
2021;11(5):702.
ACS Omega. 2023;8(27):24396-24405.
doi: 10.3390/biom11050702
doi: 10.1021/acsomega.3c01935
46. Ege D, Zheng K, Boccaccini AR. Borate bioactive glasses
(BBG): Bone regeneration, wound healing applications, and 54. Matyash M, Despang F, Ikonomidou C, Gelinsky M. Swelling
future directions. ACS Appl Bio Mater. 2022;5(8):3608-3622. and mechanical properties of alginate hydrogels with respect
to promotion of neural growth. Tissue Eng Part C Methods.
doi: 10.1021/acsabm.2c00384 2014;20(5):401-411.
47. Bi L, Rahaman MN, Day DE, et al. Effect of bioactive borate doi: 10.1089/ten.tec.2013.0252
glass microstructure on bone regeneration, angiogenesis,
and hydroxyapatite conversion in a rat calvarial defect 55. Pailler-Mattei C, Bec S, Zahouani H. In vivo measurements
model. Acta Biomater. 2013;9(8):8015-8026. of the elastic mechanical properties of human skin by
indentation tests. Med Eng Phys. 2008;30(5):599-606.
doi: 10.1016/j.actbio.2013.04.043
doi: 10.1016/j.medengphy.2007.06.011
48. Lin Y, Brown RF, Jung SB, Day DE. Angiogenic effects of
borate glass microfibers in a rodent model. J Biomed Mater 56. Khalil S, Sun W. Biopolymer deposition for freeform
Res A. 2014;102(12):4491-4499. fabrication of hydrogel tissue constructs. Mater Sci Eng C.
2007;27(3):469-478.
doi: 10.1002/jbm.a.35120
doi: 10.1016/j.msec.2006.05.023
49. Zhao S, Li L, Wang H, et al. Wound dressings composed of
copper-doped borate bioactive glass microfibers stimulate 57. Loebel C, Rodell CB, Chen MH, Burdick JA. Shear-thinning
angiogenesis and heal full-thickness skin defects in a rodent and self-healing hydrogels as injectable therapeutics and for
model. Biomaterials. 2015;53:379-391. 3D-printing. Nat Protoc. 2017;12(8):1521-1541.
doi: 10.1016/j.biomaterials.2015.02.112 doi: 10.1038/nprot.2017.053
Volume 3 Issue 1 (2024) 16 https://doi.org/10.36922/msam.2845

