Page 78 - MSAM-4-2
P. 78

Materials Science in Additive Manufacturing                                    Fibrous silk in biomedicine



               bone marrow stem cells on inkjet printed silk lines. MRS      doi: 10.1002/adhm.201701026
               Proc. 2006;950:0950-D04-18.
                                                               207. Jose RR, Brown JE, Polido KE, Omenetto FG, Kaplan DL.
               doi: 10.1557/PROC-0950-D04-18                      Polyol-silk bioink formulations as two-part room-
                                                                  temperature curable materials for 3D printing. ACS Biomater
            198. Bishop  ES,  Mostafa  S,  Pakvasa  M,  et al.  3-D  bioprinting   Sci Eng. 2015;1(9):780-788.
               technologies in tissue engineering and regenerative
               medicine: Current  and future trends.  Ann Biomed Eng.      doi: 10.1021/acsbiomaterials.5b00160
               2017;4(4):185-195.                              208. Rodriguez MJ, Dixon TA, Cohen E, Huang W, Omenetto FG,
               doi: 10.1016/j.gendis.2017.10.002                  Kaplan DL. 3D freeform printing of silk fibroin.  Acta
                                                                  Biomater. 2018;71:379-387.
            199. Rider PM, Brook IM, Smith PJ, Miller CA. Reactive
               inkjet printing of regenerated silk fibroin films for use as      doi: 10.1016/j.actbio.2018.02.035
               dental  barrier membranes.  J  Mech Behav Biomed Mater.   209. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing
               2018;9(2):46.                                      of functional biomaterials for tissue engineering. Curr Opin
            200. Compaan AM, Christensen K, Huang Y. Inkjet bioprinting   Biotechnol. 2016;40:103-112.
               of 3D silk fibroin cellular constructs using sacrificial alginate.      doi: 10.1016/j.copbio.2016.03.014
               ACS Biomater Sci Eng. 2017;3(8):1519-1526.
                                                               210. Grogan SP, Chung PH, Soman P, et al. Digital micromirror
            201. Murphy SV, Atala A. 3D bioprinting of tissues and organs.   device projection printing system for meniscus tissue
               Nat Biotechnol. 2014;32(8):773-785.                engineering. Acta Biomater. 2013;9(7):7218-7226.
               doi: 10.1038/nbt.2958                              doi: 10.1016/j.actbio.2013.03.020
            202. Ozbolat IT, Hospodiuk M. Current advances and future   211. Zheng X, Smith W, Jackson J,  et al. Multiscale metallic
               perspectives in extrusion-based bioprinting.  Biomaterials.   metamaterials. Nat Mater. 2016;15(10):1100-1106.
               2016;76:321-343.                                   doi: 10.1038/nmat4694
               doi: 10.1016/j.biomaterials.2015.10.076         212. Yusupov V, Churbanov S, Churbanova E,  et  al. Laser-
            203. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct‐  induced forward transfer hydrogel printing: A defined route
               write assembly of microperiodic silk fibroin scaffolds   for highly controlled process. Biofabrication. 2020;6(3):271.
               for tissue engineering applications.  Adv Funct Mater.      doi: 10.18063/ijb.v6i3.271
               2008;18(13):1883-1889.
                                                               213. Kim SH, Kim DY, Lim TH, Park CH. Silk fibroin bioinks
            204. Chawla S, Midha S, Sharma A, Ghosh S. Silk‐based bioinks   for digital light processing (DLP) 3D  bioprinting. In:
               for 3D bioprinting. Adv Healthc Mater. 2018;7(8):e1701204.  Bioinspired Biomaterials: Advances in Tissue Engineering
               doi: 10.1002/adhm.201701204                        and Regenerative Medicine. Berlin: Springer Nature; 2020.
                                                                  p. 53-66.
            205. Das S, Pati F, Chameettachal S,  et  al. Enhanced
               redifferentiation of chondrocytes on microperiodic silk/  214. Cui X, Zhang J, Qian Y,  et al. 3D printing strategies for
               gelatin scaffolds: Toward tailor-made tissue engineering.   precise and functional assembly of silk-based biomaterials.
               Macromol Biosci. 2013;14(2):311-321.               Biofabrication. 2024;34:92-108.
                                                               215. Na K, Shin S, Lee H, et al. Effect of solution viscosity on
               doi: 10.1021/bm301193t
                                                                  retardation of cell sedimentation in DLP 3D printing of
            206. Zheng Z, Wu J, Liu M, et al. 3D bioprinting of self‐standing   gelatin methacrylate/silk fibroin bioink.  Mater Sci Eng C
               silk‐based bioink. Adv Healthc Mater. 2018;7(6):e1701026.  Mater Biol Appl. 2018;61:340-347.





















            Volume 4 Issue 2 (2025)                         27                        doi: 10.36922/MSAM025130020
   73   74   75   76   77   78   79   80   81   82   83