Page 78 - MSAM-4-2
P. 78
Materials Science in Additive Manufacturing Fibrous silk in biomedicine
bone marrow stem cells on inkjet printed silk lines. MRS doi: 10.1002/adhm.201701026
Proc. 2006;950:0950-D04-18.
207. Jose RR, Brown JE, Polido KE, Omenetto FG, Kaplan DL.
doi: 10.1557/PROC-0950-D04-18 Polyol-silk bioink formulations as two-part room-
temperature curable materials for 3D printing. ACS Biomater
198. Bishop ES, Mostafa S, Pakvasa M, et al. 3-D bioprinting Sci Eng. 2015;1(9):780-788.
technologies in tissue engineering and regenerative
medicine: Current and future trends. Ann Biomed Eng. doi: 10.1021/acsbiomaterials.5b00160
2017;4(4):185-195. 208. Rodriguez MJ, Dixon TA, Cohen E, Huang W, Omenetto FG,
doi: 10.1016/j.gendis.2017.10.002 Kaplan DL. 3D freeform printing of silk fibroin. Acta
Biomater. 2018;71:379-387.
199. Rider PM, Brook IM, Smith PJ, Miller CA. Reactive
inkjet printing of regenerated silk fibroin films for use as doi: 10.1016/j.actbio.2018.02.035
dental barrier membranes. J Mech Behav Biomed Mater. 209. Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing
2018;9(2):46. of functional biomaterials for tissue engineering. Curr Opin
200. Compaan AM, Christensen K, Huang Y. Inkjet bioprinting Biotechnol. 2016;40:103-112.
of 3D silk fibroin cellular constructs using sacrificial alginate. doi: 10.1016/j.copbio.2016.03.014
ACS Biomater Sci Eng. 2017;3(8):1519-1526.
210. Grogan SP, Chung PH, Soman P, et al. Digital micromirror
201. Murphy SV, Atala A. 3D bioprinting of tissues and organs. device projection printing system for meniscus tissue
Nat Biotechnol. 2014;32(8):773-785. engineering. Acta Biomater. 2013;9(7):7218-7226.
doi: 10.1038/nbt.2958 doi: 10.1016/j.actbio.2013.03.020
202. Ozbolat IT, Hospodiuk M. Current advances and future 211. Zheng X, Smith W, Jackson J, et al. Multiscale metallic
perspectives in extrusion-based bioprinting. Biomaterials. metamaterials. Nat Mater. 2016;15(10):1100-1106.
2016;76:321-343. doi: 10.1038/nmat4694
doi: 10.1016/j.biomaterials.2015.10.076 212. Yusupov V, Churbanov S, Churbanova E, et al. Laser-
203. Ghosh S, Parker ST, Wang X, Kaplan DL, Lewis JA. Direct‐ induced forward transfer hydrogel printing: A defined route
write assembly of microperiodic silk fibroin scaffolds for highly controlled process. Biofabrication. 2020;6(3):271.
for tissue engineering applications. Adv Funct Mater. doi: 10.18063/ijb.v6i3.271
2008;18(13):1883-1889.
213. Kim SH, Kim DY, Lim TH, Park CH. Silk fibroin bioinks
204. Chawla S, Midha S, Sharma A, Ghosh S. Silk‐based bioinks for digital light processing (DLP) 3D bioprinting. In:
for 3D bioprinting. Adv Healthc Mater. 2018;7(8):e1701204. Bioinspired Biomaterials: Advances in Tissue Engineering
doi: 10.1002/adhm.201701204 and Regenerative Medicine. Berlin: Springer Nature; 2020.
p. 53-66.
205. Das S, Pati F, Chameettachal S, et al. Enhanced
redifferentiation of chondrocytes on microperiodic silk/ 214. Cui X, Zhang J, Qian Y, et al. 3D printing strategies for
gelatin scaffolds: Toward tailor-made tissue engineering. precise and functional assembly of silk-based biomaterials.
Macromol Biosci. 2013;14(2):311-321. Biofabrication. 2024;34:92-108.
215. Na K, Shin S, Lee H, et al. Effect of solution viscosity on
doi: 10.1021/bm301193t
retardation of cell sedimentation in DLP 3D printing of
206. Zheng Z, Wu J, Liu M, et al. 3D bioprinting of self‐standing gelatin methacrylate/silk fibroin bioink. Mater Sci Eng C
silk‐based bioink. Adv Healthc Mater. 2018;7(6):e1701026. Mater Biol Appl. 2018;61:340-347.
Volume 4 Issue 2 (2025) 27 doi: 10.36922/MSAM025130020

