Page 76 - MSAM-4-2
P. 76
Materials Science in Additive Manufacturing Fibrous silk in biomedicine
regeneration: Current concepts and future directions. BMC be used as targeted resistance factors to enhance silkworm
Med. 2011;9:66. defenses against invasive fungi. Insect Biochem Mol Biol.
2015;57:11-19.
doi: 10.1186/1741-7015-9-66
doi: 10.1016/j.ibmb.2014.11.006
153. Yudoh K, Sugishita Y, Suzuki-Takahashi Y. Bone development
and regeneration 2.0. Int J Mol Sci. 2023;24(10):8761. 164. Li Y, Zhao P, Liu S, et al. A novel protease inhibitor in
Bombyx mori is involved in defense against Beauveria
doi: 10.3390/ijms24108761
bassiana. Insect Biochem Mol Biol. 2012;42(10):766-775.
154. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and doi: 10.1016/j.ibmb.2012.07.004
bone graft substitute devices in bone regeneration. Mater Sci
Eng C Mater Biol Appl. 2021;130:112466. 165. Zhang X, Guo K, Dong Z, et al. Kunitz-type protease
inhibitor BmSPI51 plays an antifungal role in the silkworm
doi: 10.1016/j.msec.2021.112466
cocoon. Insect Biochem Mol Biol. 2020;116:103258.
155. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH, doi: 10.1016/j.ibmb.2019.103258
Kim SK. Alginate composites for bone tissue engineering:
A review. Int J Biol Macromol. 2015;72:269-281. 166. Orhan DD, Ozçelik B, Ozgen S, Ergun F. Antibacterial,
antifungal, and antiviral activities of some flavonoids.
doi: 10.1016/j.ijbiomac.2014.07.008 Microbiol Res. 2010;165(6):496-504.
156. Cao GD, Pei YQ, Liu J, Li P, Liu P, Li XS. Research progress doi: 10.1016/j.micres.2009.09.002
on bone defect repair materials. China J Orthop Traumatol.
2021;34(4):382-388. 167. Singh CP, Vaishna RL, Kakkar A, Arunkumar KP,
Nagaraju J. Characterization of antiviral and antibacterial
doi: 10.12200/j.issn.1003-0034.2021.04.018 activity of Bombyx mori seroin proteins. Cell Microbiol.
157. Mobini S, Hoyer B, Solati-Hashjin M, et al. Fabrication and 2014;16(9):1354-1365.
characterization of regenerated silk scaffolds reinforced doi: 10.1111/cmi.12294
with natural silk fibers for bone tissue engineering. J Biomed
Mater Res A. 2013;101(8):2392-2404. 168. Zhang Y, Zhao P, Dong Z, et al. Comparative proteome
analysis of multi-layer cocoon of the silkworm, Bombyx
doi: 10.1002/jbm.a.34537 mori. PLoS One. 2015;10(4):e0123403.
158. Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M, doi: 10.1371/journal.pone.0123403
Tanihara M. Deposition of bone-like apatite on silk fiber in a
solution that mimics extracellular fluid. J Biomed Mater Res 169. Dong Z, Song Q, Zhang Y, et al. Structure, evolution,
A. 2003;65(2):283-289. and expression of antimicrobial silk proteins, seroins in
Lepidoptera. Insect Biochem Mol Biol. 2016;75:24-31.
doi: 10.1002/jbm.a.10456
doi: 10.1016/j.ibmb.2016.05.005
159. Dong Z, Xia Q, Zhao P. Antimicrobial components in the
cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol. 170. Dong Z, Zhao P, Wang C, et al. Comparative proteomics
2023;224:68-78. reveal diverse functions and dynamic changes of Bombyx
mori silk proteins spun from different development stages.
doi: 10.1016/j.ijbiomac.2022.10.103 J Proteome Res. 2013;12(11):5213-5222.
160. Zhang X, Ni Y, Guo K, et al. The mutation of SPI51, a doi: 10.1021/pr4005772
protease inhibitor of silkworm, resulted in the change
of antifungal activity during domestication. Int J Biol 171. In YW, Kim JJ, Kim HJ, Oh SW. Antimicrobial activities of
Macromol. 2021;178:63-70. acetic acid, citric acid and lactic acid against Shigella species.
J Food Saf. 2013;33(1):79-85.
doi: 10.1016/j.ijbiomac.2021.02.076
172. Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and
161. Li YS, Liu HW, Zhu R, Xia QY, Zhao P. Protease inhibitors antimicrobial activities of alkaloids, flavonoids, and phenolic
in Bombyx mori silk might participate in protecting acids. Pharm Biol. 2011;49(4):396-402.
the pupating larva from microbial infection. Insect Sci.
2016;23(6):835-842. doi: 10.3109/13880209.2010.519390
173. Zhu H, Zhang X, Lu M, et al. Antibacterial mechanism of
doi: 10.1111/1744-7917.12241
silkworm seroins. Polymers. 2020;12(12):2985.
162. Guo X, Dong Z, Zhang Y, et al. Proteins in the cocoon of
silkworm inhibit the growth of Beauveria bassiana. PLoS doi: 10.3390/polym12122985
One. 2016;11(3):e0151764. 174. Gao A, Chen H, Hou A, Xie K. Efficient antimicrobial
silk composites using synergistic effects of violacein and
doi: 10.1371/journal.pone.0151764
silver nanoparticles. Mater Sci Eng C Mater Biol Appl.
163. Li Y, Zhao P, Liu H, et al. TIL-type protease inhibitors may 2019;103:109821.
Volume 4 Issue 2 (2025) 25 doi: 10.36922/MSAM025130020

