Page 76 - MSAM-4-2
P. 76

Materials Science in Additive Manufacturing                                    Fibrous silk in biomedicine



               regeneration: Current concepts and future directions. BMC   be used as targeted resistance factors to enhance silkworm
               Med. 2011;9:66.                                    defenses  against  invasive  fungi.  Insect Biochem Mol Biol.
                                                                  2015;57:11-19.
               doi: 10.1186/1741-7015-9-66
                                                                  doi: 10.1016/j.ibmb.2014.11.006
            153. Yudoh K, Sugishita Y, Suzuki-Takahashi Y. Bone development
               and regeneration 2.0. Int J Mol Sci. 2023;24(10):8761.  164. Li Y, Zhao P, Liu S,  et al. A  novel protease inhibitor in
                                                                  Bombyx  mori is involved in defense against  Beauveria
               doi: 10.3390/ijms24108761
                                                                  bassiana. Insect Biochem Mol Biol. 2012;42(10):766-775.
            154. Gillman CE, Jayasuriya AC. FDA-approved bone grafts and      doi: 10.1016/j.ibmb.2012.07.004
               bone graft substitute devices in bone regeneration. Mater Sci
               Eng C Mater Biol Appl. 2021;130:112466.         165. Zhang X, Guo K, Dong Z,  et  al. Kunitz-type protease
                                                                  inhibitor BmSPI51 plays an antifungal role in the silkworm
               doi: 10.1016/j.msec.2021.112466
                                                                  cocoon. Insect Biochem Mol Biol. 2020;116:103258.
            155. Venkatesan J, Bhatnagar I, Manivasagan P, Kang KH,      doi: 10.1016/j.ibmb.2019.103258
               Kim SK. Alginate composites for bone tissue engineering:
               A review. Int J Biol Macromol. 2015;72:269-281.  166. Orhan DD, Ozçelik B, Ozgen S, Ergun F. Antibacterial,
                                                                  antifungal, and antiviral activities of some flavonoids.
               doi: 10.1016/j.ijbiomac.2014.07.008                Microbiol Res. 2010;165(6):496-504.
            156. Cao GD, Pei YQ, Liu J, Li P, Liu P, Li XS. Research progress      doi: 10.1016/j.micres.2009.09.002
               on bone defect repair materials. China J Orthop Traumatol.
               2021;34(4):382-388.                             167. Singh CP, Vaishna RL, Kakkar A, Arunkumar KP,
                                                                  Nagaraju J. Characterization of antiviral and antibacterial
               doi: 10.12200/j.issn.1003-0034.2021.04.018         activity of  Bombyx mori seroin proteins.  Cell Microbiol.
            157. Mobini S, Hoyer B, Solati-Hashjin M, et al. Fabrication and   2014;16(9):1354-1365.
               characterization of regenerated silk scaffolds reinforced      doi: 10.1111/cmi.12294
               with natural silk fibers for bone tissue engineering. J Biomed
               Mater Res A. 2013;101(8):2392-2404.             168. Zhang Y, Zhao P, Dong Z,  et al. Comparative proteome
                                                                  analysis of multi-layer cocoon of the silkworm,  Bombyx
               doi: 10.1002/jbm.a.34537                           mori. PLoS One. 2015;10(4):e0123403.
            158. Takeuchi A, Ohtsuki C, Miyazaki T, Tanaka H, Yamazaki M,      doi: 10.1371/journal.pone.0123403
               Tanihara M. Deposition of bone-like apatite on silk fiber in a
               solution that mimics extracellular fluid. J Biomed Mater Res   169. Dong Z, Song  Q, Zhang Y,  et al. Structure, evolution,
               A. 2003;65(2):283-289.                             and expression of antimicrobial silk proteins, seroins in
                                                                  Lepidoptera. Insect Biochem Mol Biol. 2016;75:24-31.
               doi: 10.1002/jbm.a.10456
                                                                  doi: 10.1016/j.ibmb.2016.05.005
            159. Dong Z, Xia Q, Zhao P. Antimicrobial components in the
               cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol.   170. Dong Z, Zhao P, Wang C,  et  al. Comparative proteomics
               2023;224:68-78.                                    reveal diverse functions and dynamic changes of  Bombyx
                                                                  mori silk proteins spun from different development stages.
               doi: 10.1016/j.ijbiomac.2022.10.103                J Proteome Res. 2013;12(11):5213-5222.
            160. Zhang X, Ni Y, Guo K,  et al. The mutation of SPI51, a      doi: 10.1021/pr4005772
               protease inhibitor of silkworm, resulted in the change
               of antifungal activity during domestication.  Int J Biol   171. In YW, Kim JJ, Kim HJ, Oh SW. Antimicrobial activities of
               Macromol. 2021;178:63-70.                          acetic acid, citric acid and lactic acid against Shigella species.
                                                                  J Food Saf. 2013;33(1):79-85.
               doi: 10.1016/j.ijbiomac.2021.02.076
                                                               172. Ozçelik B, Kartal M, Orhan I. Cytotoxicity, antiviral and
            161. Li YS, Liu HW, Zhu R, Xia QY, Zhao P. Protease inhibitors   antimicrobial activities of alkaloids, flavonoids, and phenolic
               in  Bombyx mori silk might participate in protecting   acids. Pharm Biol. 2011;49(4):396-402.
               the pupating larva from microbial infection.  Insect Sci.
               2016;23(6):835-842.                                doi: 10.3109/13880209.2010.519390
                                                               173. Zhu H, Zhang X, Lu M, et al. Antibacterial mechanism of
               doi: 10.1111/1744-7917.12241
                                                                  silkworm seroins. Polymers. 2020;12(12):2985.
            162. Guo X, Dong Z, Zhang Y, et al. Proteins in the cocoon of
               silkworm inhibit the growth of  Beauveria bassiana.  PLoS      doi: 10.3390/polym12122985
               One. 2016;11(3):e0151764.                       174. Gao A,  Chen H, Hou  A, Xie  K. Efficient antimicrobial
                                                                  silk composites using synergistic effects of violacein and
               doi: 10.1371/journal.pone.0151764
                                                                  silver nanoparticles.  Mater  Sci  Eng  C  Mater  Biol  Appl.
            163. Li Y, Zhao P, Liu H, et al. TIL-type protease inhibitors may   2019;103:109821.


            Volume 4 Issue 2 (2025)                         25                        doi: 10.36922/MSAM025130020
   71   72   73   74   75   76   77   78   79   80   81