Page 71 - MSAM-4-2
P. 71

Materials Science in Additive Manufacturing                                    Fibrous silk in biomedicine



               doi: 10.1016/s0167-4838(99)00088-6                 doi: 10.1529/biophysj.106.089144
            37.  Hakimi O, Knight DP, Vollrath F, Vadgama P. Spider and   50.  Rajkhowa R, Levin B, Redmond SL,  et al. Structure and
               mulberry silkworm silks as compatible biomaterials. J Cell   properties of biomedical films prepared from aqueous
               Plast Biomed Eng. 2007;38(3):324-337.              and acidic  silk  fibroin solutions.  J  Biomed Mater Res A.
                                                                  2011;97(1):37-45.
            38.  Ha SW, Gracz HS, Tonelli AE, Hudson SM. Structural
               study of irregular amino acid sequences in the heavy      doi: 10.1002/jbm.a.33021
               chain of  Bombyx mori silk fibroin.  Biomacromolecules.   51.  Zhang C, Song D, Lu Q, Hu X, Kaplan DL, Zhu H. Flexibility
               2005;6(5):2563-2569.                               regeneration of silk fibroin  in vitro.  Biomacromolecules.
               doi: 10.1021/bm050294m                             2012;13(7):2148-2153.
            39.  Drummy LF,  Farmer  BL,  Naik  RR.  Correlation of  the      doi: 10.1021/bm300541g
               β-sheet crystal size in silk fibers with the protein amino acid   52.  Shao Z, Vollrath F. Surprising strength of silkworm silk. Nat
               sequence. Soft Matter. 2007;3(7):877-882.          Biotechnol. 2002;418(6899):741.
               doi: 10.1039/b701220a                              doi: 10.1038/418741a
            40.  Kundu S, Kundu B, Talukdar S,  et  al. Nonmulberry silk   53.  Sirichaisit J, Brookes VL, Young RJ, Vollrath F. Analyis of
               biopolymers. Biopolymers. 2012;97(6):455-467.      structure/property relationships in silkworm (Bombyx
            41.  Zhong J, Liu Y, Ren J,  et al. Understanding secondary   mori) and spider dragline (Nephila edulis) silks using Raman
               structures of silk materials via micro-  and nano-infrared   spectroscopy. Biomacromolecules. 2003;4(2):387-394.
               spectroscopies. ACS Biomater Sci Eng. 2019;5(7):3161-3183.     doi: 10.1021/bm0256956
               doi: 10.1021/acsbiomaterials.9b00305            54.  Vollrath F, Porter D. Silks as ancient models for modern
            42.  Kaplan D, Adams WW, Farmer B, Viney C.  Silk: Biology,   polymers. Polymer. 2009;50(24):5623-5632.
               Structure, Properties, and Genetics. Washington, D.C: ACS   55.  Pins GD, Christiansen DL, Patel R, Silver FH. Self-assembly
               Publications; 1994.                                of collagen fibers. Influence of fibrillar alignment and decorin
            43.  Foelix R.  Biology of Spiders. Oxford: Oxford University   on mechanical properties. Biophys J. 1997;73(4):2164-2172.
               Press; 2010.                                       doi: 10.1016/s0006-3495(97)78247-x
            44.  Omenetto FG, Kaplan DL. New opportunities for an ancient   56.  Yang L, Werf KO, Fitié CFC, Bennink ML, Dijkstra PJ,
               material. Science. 2010;329(5991):528-531.         Feijen J. Mechanical properties of native and cross-linked
               doi: 10.1126/science.1188936                       type I collagen fibrils. Biophys J. 2008;94(6):2204-2211.
            45.  Vollrath F, Knight DP. Liquid crystalline spinning of spider      doi: 10.1529/biophysj.107.111013
               silk. Nat Biotechnol. 2001;410(6828):541-548.   57.  Engelberg  I,  Kohn  J.  Physico-mechanical  properties
               doi: 10.1038/35069000                              of degradable polymers used in medical applications:
                                                                  A comparative study. Biomaterials. 1991;12(3):292-304.
            46.  Liu Y, Shao Z, Vollrath F. Relationships between
               supercontraction and mechanical properties of spider silk.      doi: 10.1016/0142-9612(91)90037-b
               Nat Mater. 2005;4(12):901-905.                  58.  Fang G, Huang Y, Tang Y, et al. Insights into silk formation
               doi: 10.1038/nmat1534                              process: Correlation of mechanical properties and structural
                                                                  evolution during artificial spinning of silk fibers.  ACS
            47.  Yonemura  N,  Sehnal  F,  Mita  K,  Tamura  T.  Protein   Biomater Sci Eng. 2016;2(11):1992-2000.
               composition of silk filaments spun under water by caddisfly
               larvae. Biomacromolecules. 2006;7(12):3370-3378.     doi: 10.1021/acsbiomaterials.6b00392
               doi: 10.1021/bm060663u                          59.  Gosline JM, Guerette PA, Ortlepp CS, Savage KN. The
                                                                  mechanical design of spider silks: From fibroin sequence to
            48.  Asakura  T,  Okonogi  M,  Naito  A.  Toward  understanding   mechanical function. J Exp Biol. 1999;202(23):3295-3303.
               the silk fiber structure: 13C solid-state NMR studies
               of the packing structures of alanine oligomers before      doi: 10.1242/jeb.202.23.3295
               and after trifluoroacetic acid treatment.  J  Phys Chem B.   60.  Guan J, Zhu W, Liu B, Yang K, Vollrath F, Xu J. Comparing
               2019;123(31):6716-6727.                            the microstructure and mechanical properties of  Bombyx
                                                                  mori and  Antheraea pernyi cocoon composites.  Acta
               doi: 10.1021/acs.jpcb.9b04565
                                                                  Biomater. 2017;47:60-70.
            49.  Du N, Liu XY, Narayanan J, Li L, Lim MLM, Li D. Design
               of superior spider silk: From nanostructure to mechanical      doi: 10.1016/j.actbio.2016.09.042
               properties. Biophys J. 2006;91(12):4528-4535.   61.  Gellynck K, Verdonk PCM, Nimmen EV,  et al. Silkworm


            Volume 4 Issue 2 (2025)                         20                        doi: 10.36922/MSAM025130020
   66   67   68   69   70   71   72   73   74   75   76