Page 72 - MSAM-4-2
P. 72

Materials Science in Additive Manufacturing                                    Fibrous silk in biomedicine



               and spider silk scaffolds for chondrocyte support. J Mater      doi: 10.1021/acs.nanolett.6b03597
               Sci Mater Med. 2008;19(11):3399-3409.
                                                               73.  Ling S, Li C, Adamcik J,  et al. Directed growth of silk
               doi: 10.1007/s10856-008-3474-6                     nanofibrils on graphene and their hybrid nanocomposites.
                                                                  ACS Macro Lett. 2014;3(2):146-152.
            62.  Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue
               engineered anterior cruciate ligaments.  Biomaterials.      doi: 10.1021/mz400639y
               2002;23(20):4131-4141.
                                                               74.  Guo Z, Xie W, Gao Q,  et al.  In situ biomineralization by
               doi: 10.1016/s0142-9612(02)00156-4                 silkworm feeding with ion precursors for the improved
            63.  Semmrich C, Bausch AR. Protein crystals: How the weak   mechanical properties of silk fiber.  Int J Biol Macromol.
               become strong. Nat Mater. 2010;9(4):293-295.       2018;109:21-26.
               doi: 10.1038/nmat2735                              doi: 10.1016/j.ijbiomac.2017.12.029
            64.  Yazawa K, Malay AD, Ifuku N,  et al. Combination   75.  Gao ZF, Zheng LL, Fu WL, Zhang L, Li JZ, Chen P.
               of amorphous silk fiber spinning and postspinning   Feeding alginate-coated liquid metal nanodroplets to
               crystallization  for  tough  regenerated  silk  fibers.  silkworms for highly stretchable silk fibers. Nanomaterials.
               Biomacromolecules. 2018;19(6):2227-2237.           2022;12(7):1177.
               doi: 10.1021/acs.biomac.8b00232                    doi: 10.3390/nano12071177
            65.  Yao Y, Allardyce BJ, Rajkhowa R, et al. Improving the tensile   76.  Lu H, Jian M, Gan L, et al. Highly strong and tough silk by
               properties of wet spun silk fibers using rapid Bayesian   feeding silkworms with rare earth ion-modified diets.  Sci
               algorithm. ACS Biomater Sci Eng. 2020;6(5):3197-3207.  Bull. 2023;68(23):2973-2981.
               doi: 10.1021/acsbiomaterials.0c00156            77.  Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D,
                                                                  Gronowicz G. RGD-tethered silk substrate stimulates the
            66.  Yan J, Zhou G, Knight DP, Shao Z, Chen X. Wet-spinning   differentiation of human tendon cells. Clin Orthop Relat Res.
               of regenerated silk fiber from aqueous silk fibroin solution:   2006;448:234-239.
               Discussion of spinning parameters.  Biomacromolecules.
               2010;11(1):1-5.                                    doi: 10.1097/01.blo.0000205879.50834.fe
               doi: 10.1021/bm900840h                          78.  Leem JW, Allcca AEL, Kim YJ, et al. Photoelectric silk via
                                                                  genetic encoding and bioassisted plasmonics.  Adv Biol.
            67.  Marsano  E,  Corsini  P,  Arosio  C,  Boschi  A,  Mormino  M,   2020;4(7):e2000040.
               Freddi G. Wet spinning of  Bombyx mori silk fibroin
               dissolved in N-methyl morpholine N-oxide and properties of      doi: 10.1002/adbi.202000040
               regenerated fibres. Int J Biol Macromol. 2005;37(4):179-188.  79.  Teramoto H, Iga M, Tsuboi H, Nakajima K. Characterization
               doi: 10.1016/j.ijbiomac.2005.10.005                and scaled-up production of azido-functionalized silk fiber
                                                                  produced by transgenic silkworms with an expanded genetic
            68.  Cheng Y, Koh LD, Li D, et al. Peptide-graphene interactions   code. Int J Mol Sci. 2019;20(3):616.
               enhance the mechanical properties of silk fibroin. ACS Appl
               Mater Interfaces. 2015;7(39):21787-21796.          doi: 10.3390/ijms20030616
               doi: 10.1021/acsami.5b05615                     80.  Yarger JL, Cherry BR, Van Der Vaart A. Uncovering the
                                                                  structure-function relationship in spider silk. Nat Rev Mater.
            69.  Zhao  HP,  Feng  XQ,  Shi HJ.  Variability  in  mechanical   2018;3(3):1-11.
               properties of  Bombyx mori silk.  Mater Sci Eng C. 2007;
               27(4):675-683.                                  81.  Zhang  W,  Ye  C, Zheng  K,  et al. Tensan silk-inspired
                                                                  hierarchical fibers for  smart  textile  applications.  ACS
            70.  Zhang X, Licon AL, Harris TI, et al. Silkworms with spider   Nano. 2018;12(7):6968-6977.
               silklike fibers using synthetic silkworm chow containing
               calcium lignosulfonate, carbon nanotubes, and graphene.   82.  Rajkhowa R, Gupta V, Kothari V. Tensile stress-strain and
               ACS Omega. 2019;4(3):4832-4838.                    recovery behavior of Indian silk fibers and their structural
                                                                  dependence. J Appl Polym Sci. 2000;77(11):2418-2429.
            71.  Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y.
               Carbon nanotube reinforced Bombyx mori silk nanofibers   83.  Lundmark K, Westermark GT, Olsén A, Westermark P.
               by the electrospinning process.  Biomacromolecules. 2006;   Protein fibrils in nature can enhance amyloid protein A
               7(1):208-214.                                      amyloidosis in mice: Cross-seeding as a disease mechanism.
                                                                  Proc Natl Acad Sci U S A. 2005;102(17):6098-6102.
               doi: 10.1021/bm0505888
                                                                  doi: 10.1073/pnas.0501814102
            72.  Wang Q, Wang C, Zhang M, Jian M. Feeding single-walled
               carbon nanotubes or graphene to silkworms for reinforced   84.  Lee OJ, Lee JM, Kim JH, et al. Biodegradation behavior of
               silk fibers. Nano Lett. 2016;16(10):6695-6700.     silk  fibroin  membranes  in repairing tympanic membrane


            Volume 4 Issue 2 (2025)                         21                        doi: 10.36922/MSAM025130020
   67   68   69   70   71   72   73   74   75   76   77