Page 72 - MSAM-4-2
P. 72
Materials Science in Additive Manufacturing Fibrous silk in biomedicine
and spider silk scaffolds for chondrocyte support. J Mater doi: 10.1021/acs.nanolett.6b03597
Sci Mater Med. 2008;19(11):3399-3409.
73. Ling S, Li C, Adamcik J, et al. Directed growth of silk
doi: 10.1007/s10856-008-3474-6 nanofibrils on graphene and their hybrid nanocomposites.
ACS Macro Lett. 2014;3(2):146-152.
62. Altman GH, Horan RL, Lu HH, et al. Silk matrix for tissue
engineered anterior cruciate ligaments. Biomaterials. doi: 10.1021/mz400639y
2002;23(20):4131-4141.
74. Guo Z, Xie W, Gao Q, et al. In situ biomineralization by
doi: 10.1016/s0142-9612(02)00156-4 silkworm feeding with ion precursors for the improved
63. Semmrich C, Bausch AR. Protein crystals: How the weak mechanical properties of silk fiber. Int J Biol Macromol.
become strong. Nat Mater. 2010;9(4):293-295. 2018;109:21-26.
doi: 10.1038/nmat2735 doi: 10.1016/j.ijbiomac.2017.12.029
64. Yazawa K, Malay AD, Ifuku N, et al. Combination 75. Gao ZF, Zheng LL, Fu WL, Zhang L, Li JZ, Chen P.
of amorphous silk fiber spinning and postspinning Feeding alginate-coated liquid metal nanodroplets to
crystallization for tough regenerated silk fibers. silkworms for highly stretchable silk fibers. Nanomaterials.
Biomacromolecules. 2018;19(6):2227-2237. 2022;12(7):1177.
doi: 10.1021/acs.biomac.8b00232 doi: 10.3390/nano12071177
65. Yao Y, Allardyce BJ, Rajkhowa R, et al. Improving the tensile 76. Lu H, Jian M, Gan L, et al. Highly strong and tough silk by
properties of wet spun silk fibers using rapid Bayesian feeding silkworms with rare earth ion-modified diets. Sci
algorithm. ACS Biomater Sci Eng. 2020;6(5):3197-3207. Bull. 2023;68(23):2973-2981.
doi: 10.1021/acsbiomaterials.0c00156 77. Kardestuncer T, McCarthy MB, Karageorgiou V, Kaplan D,
Gronowicz G. RGD-tethered silk substrate stimulates the
66. Yan J, Zhou G, Knight DP, Shao Z, Chen X. Wet-spinning differentiation of human tendon cells. Clin Orthop Relat Res.
of regenerated silk fiber from aqueous silk fibroin solution: 2006;448:234-239.
Discussion of spinning parameters. Biomacromolecules.
2010;11(1):1-5. doi: 10.1097/01.blo.0000205879.50834.fe
doi: 10.1021/bm900840h 78. Leem JW, Allcca AEL, Kim YJ, et al. Photoelectric silk via
genetic encoding and bioassisted plasmonics. Adv Biol.
67. Marsano E, Corsini P, Arosio C, Boschi A, Mormino M, 2020;4(7):e2000040.
Freddi G. Wet spinning of Bombyx mori silk fibroin
dissolved in N-methyl morpholine N-oxide and properties of doi: 10.1002/adbi.202000040
regenerated fibres. Int J Biol Macromol. 2005;37(4):179-188. 79. Teramoto H, Iga M, Tsuboi H, Nakajima K. Characterization
doi: 10.1016/j.ijbiomac.2005.10.005 and scaled-up production of azido-functionalized silk fiber
produced by transgenic silkworms with an expanded genetic
68. Cheng Y, Koh LD, Li D, et al. Peptide-graphene interactions code. Int J Mol Sci. 2019;20(3):616.
enhance the mechanical properties of silk fibroin. ACS Appl
Mater Interfaces. 2015;7(39):21787-21796. doi: 10.3390/ijms20030616
doi: 10.1021/acsami.5b05615 80. Yarger JL, Cherry BR, Van Der Vaart A. Uncovering the
structure-function relationship in spider silk. Nat Rev Mater.
69. Zhao HP, Feng XQ, Shi HJ. Variability in mechanical 2018;3(3):1-11.
properties of Bombyx mori silk. Mater Sci Eng C. 2007;
27(4):675-683. 81. Zhang W, Ye C, Zheng K, et al. Tensan silk-inspired
hierarchical fibers for smart textile applications. ACS
70. Zhang X, Licon AL, Harris TI, et al. Silkworms with spider Nano. 2018;12(7):6968-6977.
silklike fibers using synthetic silkworm chow containing
calcium lignosulfonate, carbon nanotubes, and graphene. 82. Rajkhowa R, Gupta V, Kothari V. Tensile stress-strain and
ACS Omega. 2019;4(3):4832-4838. recovery behavior of Indian silk fibers and their structural
dependence. J Appl Polym Sci. 2000;77(11):2418-2429.
71. Ayutsede J, Gandhi M, Sukigara S, Ye H, Hsu CM, Gogotsi Y.
Carbon nanotube reinforced Bombyx mori silk nanofibers 83. Lundmark K, Westermark GT, Olsén A, Westermark P.
by the electrospinning process. Biomacromolecules. 2006; Protein fibrils in nature can enhance amyloid protein A
7(1):208-214. amyloidosis in mice: Cross-seeding as a disease mechanism.
Proc Natl Acad Sci U S A. 2005;102(17):6098-6102.
doi: 10.1021/bm0505888
doi: 10.1073/pnas.0501814102
72. Wang Q, Wang C, Zhang M, Jian M. Feeding single-walled
carbon nanotubes or graphene to silkworms for reinforced 84. Lee OJ, Lee JM, Kim JH, et al. Biodegradation behavior of
silk fibers. Nano Lett. 2016;16(10):6695-6700. silk fibroin membranes in repairing tympanic membrane
Volume 4 Issue 2 (2025) 21 doi: 10.36922/MSAM025130020

