Page 147 - MSAM-4-3
P. 147

Materials Science in Additive Manufacturing               Sunflower-inspired microwave-absorbing metastructure



               load bearing. Mater Res Bull. 2023;166:112368.     iron/polylactic acid composite filament for fused deposition
                                                                  modeling. Materials. 2022;15(15):5455.
               doi: 10.1016/j.materresbull.2023.112368
                                                                  doi: 10.3390/ma15155455
            18.  Huang L, Duan Y, Dai X, et al. Bioinspired metamaterials:
               Multibands electromagnetic wave adaptability and   29.  Feng MF, Zhang KF, Xiao JJ,  et  al. Material-structure
               hydrophobic characteristics. Small. 2019;15(40):1902730.  collaborative design for broadband microwave absorption
                                                                  metamaterial with low density and thin thickness. Compos
               doi: 10.1002/smll.201902730
                                                                  Pt B-Eng. 2023;263:110862.
            19.  Jiang  W,  Yan  LL,  Ma  H,  et al.  Electromagnetic  wave      doi: 10.1016/j.compositesb.2023.110862
               absorption and compressive behavior of a three-dimensional
               metamaterial absorber based on 3D printed honeycomb. Sci   30.  Lei L, Yao ZJ, Zhou JT, Wei B, Fan HY. 3D printing of
               Rep. 2018;8:4817.                                  carbon black/polypropylene composites with excellent
                                                                  microwave absorption performance.  Compos Sci Technol.
               doi: 10.1038/s41598-018-23286-6
                                                                  2020;200:108479.
            20.  Huang L, Duan Y, Liu J,  et al. Bionic composite      doi: 10.1016/j.compscitech.2020.108479
               metamaterials for harvesting of microwave and integration
               of multifunctionality. Compos Sci Technol. 2021;204:108640.  31.  Ye XC, Yang C, He EY, et al. Electromagnetic wave absorption
                                                                  properties of the FeSiAl/PLA and FeSiAl-MoS2-Graphene/
               doi: 10.1016/j.compscitech.2020.108640             PLA double-layer absorber formed by fused deposition
            21.  Wu W, Xu R, Zhou Y, et al. Biomimetic 3D coral reef-like   modeling. J Magn Magn Mater. 2023;565:170280.
               GO@TiO2 composite framework inlaid with TiO2-C for      doi: 10.1016/j.jmmm.2022.170280
               low-frequency electromagnetic wave absorption.  Carbon.
               2021;178:144-156.                               32.  Baqir MA, Latif H, Altintas O, et al. Fractal metamaterial
                                                                  based multiband absorber operating in 5G regime. Optik.
               doi: 10.1016/j.carbon.2020.11.085                  2022;266:169626.
            22.  An Q, Li DW, Liao WH,  et al.  A  novel ultra-wideband      doi: 10.1016/j.ijleo.2022.169626
               electromagnetic-wave-absorbing metastructure inspired by
               bionic gyroid structures. Adv Mater. 2023;35(26):2300659.  33.  Zhang Z, Wang F, Zhang JL, Li PF, Jiang KY. Ultra-broadband
                                                                  and wide-angle metamaterial absorber with carbon black/
               doi: 10.1002/adma.202300659                        carbonyl iron composites fabricated by direct-ink-write 3D
            23.  Chen ZM, Zhang Y, Wang ZD,  et al.  Bioinspired moth-  printing. Adv Eng Mater. 2023;25(6):2201236.
               eye   multi-mechanism  composite  ultra-wideband     doi: 10.1002/adem.202201236
               microwave absorber based on the graphite powder. Carbon.
               2023;201:542-548.                               34.  Min DD, Zhou WC, Qing YC, Luo F, Zhu DM. Single-
                                                                  layer and double-layer microwave absorbers based
               doi: 10.1016/j.carbon.2022.09.035                  on   graphene  nanosheets/epoxy  resin  composite.
            24.  Chen X, Li YL, Cheng SY,  et al. Liquid metal-MXene-  Nano. 2017;12(7):1750089.
               based hierarchical aerogel with radar-infrared compatible      doi: 10.1142/s1793292017500898
               camouflage. Adv Funct Mater. 2024;34(10):2308274.
                                                               35.  Zhou Q, Yin XW, Ye F, Liu XF, Cheng LF, Zhang LT. A novel
               doi: 10.1002/adfm.202308274                        two-layer periodic stepped structure for effective broadband
            25.  Chen Y, He YQ, Zhu XQ. Flower-type pulsating heat pipe for   radar electromagnetic absorption. Mater Des. 2017;123:46-53.
               a solar collector. Int J Energy Res. 2020;44(9):7734-7745.     doi: 10.1016/j.matdes.2017.03.044
               doi: 10.1002/er.5505                            36.  Duan YB, Liang QX, Yang Z, et al. A wide-angle broadband
            26.  Xu  YC,  Huang  YZ,  Yan  H,  et al.  Sunflower-pith-inspired   electromagnetic absorbing metastructure using 3D printing
               anisotropic auxetic mechanics from dual-gradient cellular   technology.  Mater Des.  2021;208:109900.  doi: 10.1016/j.
               structures. Matter. 2023;6(5):1569-1584.           matdes.2021.109900
                                                               37.  Huang YX, Song WL, Wang CX, et al. Multi-scale design of
               doi: 10.1016/j.matt.2023.03.010
                                                                  electromagnetic composite metamaterials for broadband
            27.  Yu SQ, Liu JG, Zhao PY, Tang YY. A flat-foldable equiangular   microwave absorption. Compos Sci Technol. 2018;162:206-214.
               spiral folding pattern inspired by sunflowers for deployable      doi: 10.1016/j.compscitech.2018.04.028
               structures. Chin J Aeronaut. 2024;37(6):425-438.
                                                               38.  Wang BC, Wei JQ, Yang Y, Wang T, Li FS. Investigation
               doi: 10.1016/j.cja.2023.10.004
                                                                  on  peak  frequency  of  the  microwave  absorption  for
            28.  Wang F, Zhou QF, Zhang Z, Gu YH, Zhang JL, Jiang KY.   carbonyl iron/epoxy resin composite. J Magn Magn Mater.
               Microwave absorption properties of carbon black-carbonyl   2011;323(8):1101-1103.



            Volume 4 Issue 3 (2025)                         13                        doi: 10.36922/MSAM025220048
   142   143   144   145   146   147   148   149   150   151   152