Page 73 - TD-4-1
P. 73

Tumor Discovery                                                  Drug repurposing for pancreatic cancer via AI



            13.  Zhan YP, Chen BS. Drug target identification and drug   of mammalian transcription factors.  Bioinformatics.
               repurposing in psoriasis through systems biology approach,   2008;24(20):2416-2417.
               DNN-based DTI model and genome-wide microarray data.      doi: 10.1093/bioinformatics/btn439
               Int J Mol Sci. 2023;24(12):10033.
                                                               24.  Wingender E, Chen X, Hehl R,  et al. TRANSFAC: An
               doi: 10.3390/ijms241210033
                                                                  integrated system for gene expression regulation.  Nucleic
            14.  Wang CT, Chen BS. Drug discovery for periodontitis   Acids Res. 2000;28(1):316-319.
               treatment based on big data mining, systems biology, and
               deep learning methods. SynBio. 2023;1(1):116-143.     doi: 10.1093/nar/28.1.316
                                                               25.  Friard O, Re A, Taverna D, De Bortoli M, Corá D. CircuitsDB:
               doi: 10.3390/synbio1010009
                                                                  A database of mixed microRNA/transcription factor feed-
            15.  Hsu  BW,  Chen  BS.  Genetic  and  epigenetic  host-virus   forward regulatory circuits in human and mouse.  BMC
               network to investigate pathogenesis and identify biomarkers   Bioinformatics. 2010;11(1):435.
               for drug repurposing of human respiratory syncytial virus
               via real-world two-side RNA-Seq data: Systems biology and      doi: 10.1186/1471-2105-11-435
               deep-learning approach. Biomedicines. 2023;11(6):1531.  26.  Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective
                                                                  microRNA target sites in mammalian mRNAs.  Elife.
               doi: 10.3390/biomedicines11061531
                                                                  2015;4:e05005.
            16.  Lin YC, Chen BS. Identifying drug targets of oral squamous
               cell carcinoma through a systems biology method and      doi: 10.7554/eLife.05005
               genome-wide microarray data for drug discovery by deep   27.  Li  JH, Liu  S, Zhou H,  Qu  LH, Yang  JH. StarBase  v2.0:
               learning and drug design specifications.  Int J Mol Sci.   Decoding miRNA-ceRNA, miRNA-ncRNA and protein-
               2022;23(18):10409.                                 RNA interaction networks from large-scale CLIP-Seq data.
               doi: 10.3390/ijms231810409                         Nucleic Acids Res. 2013;42(D1):D92-D97.
            17.  Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA,      doi: 10.1093/nar/gkt1248
               Murugesan S. Drug repurposing: An effective tool in modern   28.  Chen BS, Wu CC. Systems biology as an integrated platform
               drug discovery. Russ J Bioorg Chem. 2023;49(2):157-166.  for bioinformatics, systems synthetic biology, and systems
               doi: 10.1134/s1068162023020139                     metabolic engineering. Cells. 2013;2(4):635-688.
            18.  Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU,      doi: 10.3390/cells2040635
               Eisenberg D. The database of interacting proteins: 2004   29.  Sakamoto Y, Ishiguro M, Kitagawa G. Akaike information
               update. Nucleic Acids Res. 2004;32(suppl_1):D449-D451.  criterion statistics.  Dordrecht Netherlands D Reidel.
               doi: 10.1093/nar/gkh086                            1986;81(10.5555):26853.
            19.  Orchard S, Ammari M, Aranda B,  et al. The MIntAct   30.  Chang S, Wang LHC, Chen BS. Investigating core signaling
               project--IntAct as a common curation platform for   pathways of hepatitis b virus pathogenesis for biomarkers
               11 molecular interaction databases.  Nucleic Acids Res.   identification and drug discovery via systems biology and
               2013;42(D1):D358-D363.                             deep learning method. Biomedicines. 2020;8(9):320.
               doi: 10.1093/nar/gkt1115                           doi: 10.3390/biomedicines8090320
            20.  Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A,   31.  Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes
               Tyers M. BioGRID: A  general repository for interaction   and genomes. Nucleic Acids Res. 2000;28(1):27-30.
               datasets. Nucleic Acids Res. 2006;34(suppl_1):D535-D539.     doi: 10.1093/nar/28.1.27
               doi: 10.1093/nar/gkj109                         32.  Wang Y, Zhang S, Li F,  et al. Therapeutic target database
            21.  Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G,   2020: Enriched resource for facilitating research and early
               Helmer-Citterich M, Cesareni G. MINT: A  molecular   development of targeted therapeutics.  Nucleic Acids Res.
               INTeraction database. FEBS Lett. 2002;513(1):135-140.  2019;48(D1):D1031-D1041.
               doi: 10.1016/S0014-5793(01)03293-8                 doi: 10.1093/nar/gkz981
            22.  Bovolenta  LA,  Acencio  ML,  Lemke  N.  HTRIdb:  An   33.  Consortium TU. UniProt: A hub for protein information.
               open-access database for experimentally verified human   Nucleic Acids Res. 2014;43(D1):D204-D212.
               transcriptional regulation interactions.  BMC Genomics.      doi: 10.1093/nar/gku989
               2012;13(1):405.
                                                               34.  Knox C, Law V, Jewison T,  et al. DrugBank 3.0:
               doi: 10.1186/1471-2164-13-405
                                                                  A  comprehensive resource for ‘Omics’ research on drugs.
            23.  Zheng G, Tu K, Yang Q, et al. ITFP: An integrated platform   Nucleic Acids Res. 2010;39(suppl_1):D1035-D1041.


            Volume 4 Issue 1 (2025)                         65                                doi: 10.36922/td.4709
   68   69   70   71   72   73   74   75   76   77   78