Page 37 - manuscript_ijb05580
P. 37

14.    Chapman JH, Ghosh D, Attari S, Ude CC, Laurencin CT. Animal Models of Osteoarthritis:
               Updated Models and Outcome Measures 2016–2023. Regener. Eng. Transl. Med. 2023;10(2):127-
               146. doi:10.1007/s40883-023-00309-x

               15.    Singh YP, Moses JC, Bhardwaj N, Mandal BB. Overcoming the Dependence on Animal
               Models for Osteoarthritis Therapeutics – The Promises and Prospects of In Vitro Models. Adv.
               Healthcare Mater. 2021;10(20):2100961. doi:10.1002/adhm.202100961

               16.    Zhou M, Lozano N, Wychowaniec JK, et al. Graphene oxide: A growth factor delivery
               carrier to enhance chondrogenic differentiation of human mesenchymal stem cells in 3D hydrogels.
               Acta Biomater. 2019;96:271-280. doi:https://doi.org/10.1016/j.actbio.2019.07.027

               17.    Ding SL, Zhao XY, Xiong W, et al. Cartilage Lacuna‐Inspired Microcarriers Drive Hyaline
               Neocartilage Regeneration. Adv. Mater. 2023;35(30). doi:10.1002/adma.202212114

               18.    Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis. Int. J.
               Mol. Sci. Oct 30 2015;16(11):26035-54. doi:10.3390/ijms161125943


               19.    Ebata  T,  Terkawi  MA,  Kitahara  K,  et  al.  Noncanonical  Pyroptosis  Triggered  by
               Macrophage‐Derived Extracellular Vesicles in Chondrocytes Leading to Cartilage Catabolism in
               Osteoarthritis. Arthritis & Rheumatology. 2023;75(8):1358-1369. doi:10.1002/art.42505

               20.    Maihemuti A, Zhang H, Lin X, et al. 3D-printed fish gelatin scaffolds for cartilage tissue
               engineering. Bioact. Mater. 2023;26:77-87. doi:10.1016/j.bioactmat.2023.02.007

               21.    Korpayev S, Kaygusuz G, Şen M, Orhan K, Oto Ç, Karakeçili A. Chitosan/collagen based
               biomimetic osteochondral tissue constructs: A growth factor-free approach. Int. J. Biol. Macromol.
               2020;156:681-690. doi:https://doi.org/10.1016/j.ijbiomac.2020.04.109

               22.    Singh YP, Moses JC, Bandyopadhyay A, Mandal BB. 3D Bioprinted Silk‐Based In Vitro
               Osteochondral    Model     for   Osteoarthritis   Therapeutics.   Adv.    Healthcare    Mater.
               2022;11(24):200209. doi:10.1002/adhm.202200209


               23.    Salehi S, Brambilla S, Rasponi M, Lopa S, Moretti M. Development of a Microfluidic
               Vascularized Osteochondral Model as a Drug Testing Platform for Osteoarthritis. Adv. Healthcare
               Mater. 2024;13(31). doi:10.1002/adhm.202402350

               24.    Ong LJY, Sun AR, Wang Z, Lee J, Prasadam I, Toh YC. Localized Oxygen Control in a
               Microfluidic  Osteochondral  Interface  Model  Recapitulates  Bone–Cartilage  Crosstalk  During
               Osteoarthritis. Adv. Funct. Mater. 2024;34(28):2315608. doi:10.1002/adfm.202315608

               25.    Wei Y, Deng Y, Ma S, et al. Local drug delivery systems as therapeutic strategies against
               periodontitis:   A   systematic    review.    J.   Controlled   Release.    2021;333:269-282.
               doi:https://doi.org/10.1016/j.jconrel.2021.03.041

               26.    Jo  YK,  Lee  D.  Biopolymer  microparticles  prepared  by  microfluidics  for  biomedical
               applications. Small. 2020;16(9):1903736. doi:https://doi.org/10.1002/smll.201903736









                                                             36
   32   33   34   35   36   37   38   39   40