Page 29 - manuscript_ijb05583
P. 29

References


               1.      Berthiaume, F., Maguire, T. J. & Yarmush, M. L. Tissue Engineering and Regenerative
               Medicine:  History,  Progress,  and  Challenges.  Annu.  Rev.  Chem.  Biomol.  Eng.  2,  403–430
               (2011).

               2.      Langer, R. & Vacanti, J. Tissue Engineering. Science vol. 260 (1993).

               3.      Fontoura, J. C. et al. Comparison of 2D and 3D cell culture models for cell growth,
               gene expression and drug resistance. Mater. Sci. Eng. C 107, 110264 (2020).

               4.      Khademhosseini, A. & Langer, R. A decade of progress in tissue engineering.  Nat.
               Protoc. 2016 1110 11, 1775–1781 (2016).

               5.      Ovsianikov, A., Khademhosseini, A. & Mironov, V. The Synergy of Scaffold-Based
               and Scaffold-Free Tissue Engineering Strategies. Trends Biotechnol. 36, 348–357 (2018).

               6.      Daly,  A.  C.,  Riley,  L.,  Segura,  T.  &  Burdick,  J.  A.  Hydrogel  microparticles  for
               biomedical applications. Nat. Rev. Mater. 5, 20–43 (2019).

               7.      Hutmacher, D. W. Scaffold design and fabrication technologies for engineering tissues
               — state of the art and future perspectives. J. Biomater. Sci. Polym. Ed. 12, 107–124 (2001).
               8.      Ng, W. L., Vyas, C., Huang, B., Yeong, W. Y. & Bartolo, P. Advanced bioprinting
               strategies for fabrication of biomimetic tissues and organs. Int. J. Extreme Manuf. 7, 062006
               (2025).

               9.      Yang, G., Mahadik, B., Choi, J. Y. & Fisher, J. P. Vascularization in tissue engineering:
               fundamentals and state-of-art. Prog. Biomed. Eng. 2, 012002 (2020).

               10.     Zhang, S., Wang, Y., Onck, P. & den Toonder, J. A concise review of microfluidic
               particle manipulation methods. Microfluid. Nanofluidics 2020 244 24, 1–20 (2020).
               11.     Sajeesh, P. &  Sen, A. K. Particle separation and sorting  in  microfluidic devices:  a
               review. Microfluid. Nanofluidics 17, 1–52 (2014).

               12.     Zhang, P., Chang, K.-C. & Abate, A. R. Precision ejection of microfluidic droplets into
               air with a superhydrophobic outlet. Lab. Chip 21, 1484–1491 (2021).

               13.     Kamperman, T., Trikalitis, V. D., Karperien, M., Visser, C. W. & Leijten, J. Ultrahigh-
               Throughput Production of Monodisperse and Multifunctional Janus Microparticles Using in-
               Air Microfluidics. ACS Appl. Mater. Interfaces 10, 23433–23438 (2018).
               14.     Visser,  C.  W.,  Kamperman,  T.,  Karbaat,  L.  P.,  Lohse,  D.  &  Karperien,  M.  In-air
               microfluidics  enables  rapid  fabrication  of  emulsions,  suspensions,  and  3D  modular
               (bio)materials. Sci. Adv. 4, eaao1175 (2018).


                                                           28
   24   25   26   27   28   29   30