Page 90 - AC-2-3
P. 90

Arts & Communication                                                      Computer vision in tactical AI art



            65.  Shinseungback   Kimyonghun.   Mind.  Shinseungback  77.  Yang K, Qinami K, Fei-Fei L, Deng J, Russakovsky O.
               Kimyonghun’s Website; 2019. Available from: https://ssbkyh.  Towards  Fairer  Datasets:  Filtering  and  Balancing  the
               com/works/mind [Last accessed on 2024 Apr 05].     Distribution of the People Subtree in the ImageNet Hierarchy.
                                                                  ImageNet website; 2019. Available from: https://image-net.
            66.  Lozano-Hemmer R.  Level of Confidence. Rafael Lozano-  org/update-sep-17-2019.php [Last accessed 2024 Apr 05].
               Hemmer’s Website; 2015. Available from: https://www.
               lozano-hemmer.com/level_of_confidence.php  [Last  78.  Lyons MJ. Excavating ‘Excavating AI’: The Elephant in the
               accessed on 2024 Apr 05].                          Gallery.  arXiv preprint; 2020. Available from https://arxiv.
                                                                  org/abs/2009.01215 [Last accessed on 2024 Apr 05].
            67.  Zer-Aviv M. The Normalizing Machine. Mushon Zer-Aviv’s
               Website; 2018. Available from: https://mushon.com/tnm   79.  Leibowicz C, Saltz E, Coleman L. Creating AI art responsibly:
               [Last accessed: 2024 Apr 05].                      A field guide for artists. Diseña. 2021;19:5.
            68.  Mitchell M.  Artificial Intelligence: A Guide for Thinking   doi: 10.7764/disena.19.Article.5
               Humans, 88-90. Kindle edition. New York, NY: Farrar,   80.  Lossin RH. Trevor Paglen’s Unstable Truths. e-flux Criticism;
               Straus and Giroux; 2019.                           2023. Available from: https://editor.e-flux-systems.com/
            69.  Kearns M,  Roth A.  The Ethical Algorithm: The Science of   files/544198_e-flux-criticism-trevor-paglen-s-unstable-
               Socially Aware Algorithm Design, 32-48. Oxford, UK: Oxford   truths.pdf [Last accessed on 2024 Apr 05].
               University Press; 2019.                         81.  Groß B, Lee J.  The Aerial Bold Project. Benedikt Groß’s
            70.  Pasquinelli M.  Abnormal Encephalization in the Age of   Website; 2016. Available from https://benedikt-gross.
               Machine Learning.  e-flux; 2016. Available from: https://  de/projects/the-aerial-bold-project  [Last  accessed  on
               worker01.e-flux.com/pdf/article_9009069.pdf  [Last  2024 Apr 05].
               accessed on 2024 Apr 05].                       82.  Wilner  RG.  Pareidolia  and  the  pitfalls  of  subjective
            71.  Orcutt  M. Are Face Recognition Systems Accurate?   interpretation of ambiguous images in art history. Leonardo.
               Depends on Your Race. MIT Technology Review Website;   2021;54(6):638-642.
               2016. Available from: https://www.technologyreview.  83.  Gradecki J, Curry D. Boogaloo Bias. Project website; 2022.
               com/2016/07/06/158971/are-face-recognition-systems-  Available from https://www.boogaloo-bias.art [Last accessed
               accurate-depends-on-your-race  [Last  accessed  on  on 2024 Apr 05].
               2024 Apr 05].
                                                               84.  Larson EJ. The Myth of Artificial Intelligence: Why Computers
            72.  Buolamwini J, Gebru T. Gender Shades: Intersectional   Can’t Think the Way We Do, 76-83. Cambridge/London, UK:
               Accuracy Disparities in Commercial Gender Classification,   The Belknap Press of Harvard University Press; 2021.
               In: Friedler SA, Wilson C, editors.  Proceedings of the
               1  Conference on Fairness, Accountability and Transparency   85.  Schmieg  S.  Decisive Camera. Sebastian Schmieg’s  website;
                st
               81. New  York; 2018. p.  77-91. Available from: https://  2018. Available from: https://sebastianschmieg.com/
               proceedings.mlr.press/v81/buolamwini18a.html  [Last  decisive-camera [Last accessed on 2024 Apr 05].
               accessed on 2024 Apr 05].                       86.  Schmieg  S.  Decisive Mirror. Sebastian Schmieg’s website;
            73.  Gershgorn D.  How a 2018 Research Paper Led Amazon,   2019. Available from: https://sebastianschmieg.com/
               Microsoft, and IBM to Curb Their Facial Recognition   decisive-mirror [Last accessed on 2024 Apr 05].
               Programs. OneZero Medium website; 2020. Available from:   87.  Zeilinger M. Tactical Entanglements: AI Art, Creative Agency,
               https://onezero.medium.com/how-a-2018-research-paper-  and the Limits of Intellectual Property, 51-55. Lüneburg, DE:
               led-to-amazon-and-ibm-curbing-their-facial-recognition-  Meson Press; 2021
               programs-db9d6cb8a420 [Last accessed on 2024 Apr 05].
                                                               88.  Basanta A. All We’d Ever Need Is One Another. Adam Basanta’s
            74.  Crawford K, Paglen T. Excavating AI: The Politics of Training   website; 2018. Available from: https://adambasanta.com/
               Sets for Machine Learning. Project website; 2019. Available   allwedeverneed [Last accessed on 2024 Apr 05].
               from: https://excavating.ai [Last accessed on 2024 Apr 05].
                                                               89.  Zeilinger M. Tactical Entanglements: AI Art, Creative Agency,
            75.  Kuesel C. An Online Image Database Will Remove 600,000   and the Limits of Intellectual Property, 94-108. Lüneburg,
               Pictures After an Art Project Revealed the System’s Racist   DE: Meson Press; 2021.
               Bias; 2019. Available from: https://www.artsy.net/article/
               artsy-editorial-online-image-database-will-remove-600–  90.  Curry D. Artistic defamiliarization in the age of algorithmic
               000-pictures-art-project-revealed-systems-racist-bias  [Last   prediction. Leonardo. 2023;56(2):177-182.
               accessed on 2024 Apr 05].                       91.  Smil V. Invention and Innovation: A Brief History of Hype
                                                                  and Failure. Cambridge, MA: The MIT Press; 2023. p. 157-
            76.  Arpteg A. Reflections on the ImageNet Roulette Provocation;
               2019. Available from: https://www.linkedin.com/pulse/  165.
               reflections-imagenet-roulette-provocation-anders-arpteg   92.  Żylińska J.  AI Art: Machine Visions and Warped Dreams,
               [Last accessed on 2024 Apr 05].                    75-85. London, UK: Open Humanities Press; 2020


            Volume 2 Issue 3 (2024)                         17                               doi: 10.36922/ac.2282
   85   86   87   88   89   90   91   92   93   94   95