Page 18 - AIH-1-2
P. 18

Artificial Intelligence in Health                                         AI in the battle against COVID-19



            32.  Burbidge R, Trotter M, Buxton B, Holden S. Drug design   Health. 2020;17:3176.
               by machine learning: Support vector machines for      doi: 10.3390/ijerph17093176
               pharmaceutical data analysis. Comput Chem. 2001;26:5-14.
                                                               43.  Dong D, Tang Z, Wang S, et al. The role of imaging in the
               doi: 10.1016/S0097-8485(01)00094-8
                                                                  detection and management of COVID-19: A review. IEEE
            33.  Zernov VV, Balakin KV, Ivaschenko AA, Savchuk NP,   Rev Biomed Eng. 2020;14:16-29.
               Pletnev IV. Drug discovery using support vector machines.      doi: 10.1109/RBME.2020.2990959
               The case studies of drug-likeness, agrochemical-likeness,
               and enzyme inhibition predictions. J Chem Inf Comput Sci.   44.  Wang L, Lin ZQ, Wong A. Covid-net: A  tailored deep
               2003;43:2048-2056.                                 convolutional neural network design for detection of covid-
                                                                  19 cases from chest x-ray images. Sci Rep. 2020;10:19549.
               doi: 10.1021/ci0341161
                                                                  doi: 10.1038/s41598-020-76550-z
            34.  Collins FS, Morgan M, Patrinos A. The human genome
               project: Lessons from large-scale biology.  Science.   45.  Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O,
               2003;300:286-290.                                  Acharya UR. Automated detection of COVID-19  cases
                                                                  using deep neural networks with X-ray images. Comput Biol
               doi: 10.1126/science.1084564
                                                                  Med. 2020;121:103792.
            35.  Wallach I, Dzamba M, Heifets A. AtomNet: A  deep      doi: 10.1016/j.compbiomed.2020.103792
               convolutional neural network for bioactivity prediction
               in structure-based drug discovery. arXiv preprint   46.  Li L, Qin L, Xu Z, et al. Artificial intelligence distinguishes
               arXiv:1510.02855. 2015.                            COVID-19 from community acquired pneumonia on chest
                                                                  CT. Radiology. 2020;296:E65-E71.
            36.  Piwek L, Ellis DA, Andrews S, Joinson A. The rise of
               consumer health wearables: Promises and barriers.  PLoS      doi: 10.1148/radiol.2020200905
               Med. 2016;13:e1001953.                          47.  Shi F, Xia L, Shan F, et al. Large-scale screening to distinguish
               doi: 10.1371/journal.pmed.1001953                  between COVID-19 and community-acquired pneumonia
                                                                  using infection size-aware classification.  Phys Med Biol.
            37.  Kaur G. Pandemic management via technology: A review.
               Management. 2011;40:181-187.                       2021;66:065031.
                                                                  doi: 10.1088/1361-6560/abe838
               doi: 10.1016/j.indmarman.2010.06.026
                                                               48.  Zhang K, Liu X, Shen J,  et al. Clinically applicable AI
            38.  Sadilek A, Kautz H, Silenzio V. Predicting Disease
               Transmission from Geo-Tagged Micro-Blog Data. Vol. 26.   system for accurate diagnosis, quantitative measurements,
               In:  Proceedings of the AAAI Conference on Artificial   and prognosis of COVID-19 pneumonia using computed
                                                                  tomography. Cell. 2020;181:1423-1433.e11.
               Intelligence. 2012. p. 136-142.
                                                                  doi: 10.1016/j.cell.2020.04.045
               doi: 10.1609/aaai.v26i1.8103
                                                               49.  Jiang X, Coffee M, Bari A,  et al. Towards an artificial
            39.  Raza Abidi SS, Goh A. Applying Knowledge Discovery
               to Predict Infectious Disease Epidemics.  In:  Pacific Rim   intelligence  framework  for  data-driven  prediction  of
               International Conference on Artificial Intelligence. Berlin:   coronavirus clinical severity.  Comput Mater Continua.
                                                                  2020;63:537-551.
               Springer; 1998. p. 170-181.
                                                                  doi: 10.32604/cmc.2020.010691
               doi: 10.1007/BFb0095267
                                                               50.  Ahamad MM,  Aktar S, Rashed-Al-Mahfuz M,  et al.
            40.  Lampos  V,  Cristianini N.  Tracking  the  Flu Pandemic  by
               Monitoring the Social Web. In:  2010  2   International   A machine learning model to identify early stage symptoms
                                               nd
                                                                  of SARS-Cov-2 infected patients.  Expert  Syst  Appl.
               Workshop on Cognitive Information Processing. IEEE; 2010.
               p. 411-416.                                        2020;160:113661.
                                                                  doi: 10.1016/j.eswa.2020.113661
               doi: 10.1109/CIP.2010.5604088
                                                               51.  Zoabi Y, Deri-Rozov S, Shomron N. Machine learning-based
            41.  Choi S, Lee J, Kang MG, Min H, Chang YS, Yoon S. Large-  prediction of COVID-19 diagnosis based on symptoms. NPJ
               scale machine learning of media outlets for understanding
               public reactions to nation-wide viral infection outbreaks.   Digit Med. 2021;4:3.
               Methods. 2017;129:50-59.                           doi: 10.1038/s41746-020-00372-6
               doi: 10.1016/j.ymeth.2017.04.004                52.  Menni C, Valdes AM, Freydin MB, et al. Real-time tracking
                                                                  of self-reported symptoms to predict potential COVID-19.
            42.  Bragazzi NL, Dai H, Damiani G, Behzadifar M, Martini M,
               Wu J. How big data and artificial intelligence can help better   Nat Med. 2020;26:1037-1040.
               manage the COVID-19 pandemic. Int J Environ Res Public      doi: 10.1038/s41591-020-0916-2


            Volume 1 Issue 2 (2024)                         12                               doi: 10.36922/aih.2401
   13   14   15   16   17   18   19   20   21   22   23