Page 20 - AIH-1-2
P. 20

Artificial Intelligence in Health                                         AI in the battle against COVID-19



               doi: 10.1038/s41598-020-73510-5                 87.  Heo K, Lee D, Seo Y, Choi H. Searching for digital
                                                                  technologies  in  containment  and  mitigation  strategies:
            77.  Pulido CM, Villarejo-Carballido B, Redondo-Sama G,
               Gómez A. COVID-19 infodemic: More retweets for science-  Experience from South Korea COVID-19. Ann Glob Health.
               based information on coronavirus than for false information.   2020;86:109.
               Int Sociol. 2020;35:377-392.                       doi: 10.5334/aogh.2993
               doi: 10.1177/0268580920914755                   88.  Chung H, Ko H, Kang WS,  et al. Prediction and feature
                                                                  importance analysis for severity of COVID-19 in
            78.  Klein  AZ, Magge A, O’Connor K, Flores AIJ,
               Weissenbacher  D, Gonzalez  Hernandez  G. Toward  using   South Korea using artificial intelligence: Model development
               Twitter for tracking COVID-19: A  natural language   and validation. J Med Internet Res. 2021;23:e27060.
               processing pipeline and exploratory data set. J Med Internet      doi: 10.2196/27060
               Res. 2021;23:e25314.
                                                               89.  Nam T. How did Korea use technologies to manage the
               doi: 10.2196/25314                                 COVID-19 crisis? A country report. Int Rev Public Admin.
                                                                  2020;25:225-242.
            79.  Newlands G, Lutz C, Tamò-Larrieux A, Villaronga EF,
               Harasgama R, Scheitlin G. Innovation under pressure:      doi: 10.1080/12294659.2020.1848061
               Implications for data privacy during the Covid-19 pandemic.   90.  Lee JK, Lin L, Kang H. The influence of normative
               Big Data Soc. 2020;7:2053951720976680.
                                                                  perceptions on the uptake of the COVID-19 TraceTogether
               doi: 10.1177/2053951720976680                      digital contact tracing system: Cross-sectional study. JMIR
                                                                  Public Health Surveill. 2021;7:e30462.
            80.  Christofidou M, Lea N, Coorevits P. A literature review on
               the  GDPR,  COVID-19  and  the  ethical  considerations  of      doi: 10.2196/30462
               data protection during a time of crisis. Yearb Med Inform.   91.  Stevens H, Haines MB. Tracetogether: Pandemic response,
               2021;30:226-232.
                                                                  democracy, and technology.  East Asian Sci Technol Soc.
               doi: 10.1055/s-0041-1726512                        2020;14:523-532.
            81.  Delgado J, Manuel A, Parra I, et al. Bias in algorithms of      doi: 10.1215/18752160-8698301
               AI systems developed for COVID-19: A  scoping review.   92.  Davahli MR, Karwowski W, Fiok K. Optimizing
               J Bioeth Inq. 2022;19:407-419.
                                                                  COVID-19 vaccine distribution across the United States
               doi: 10.1007/s11673-022-10200-z                    using  deterministic  and  stochastic  recurrent  neural
                                                                  networks. PLoS One. 2021;16:e0253925.
            82.  Queralt-Rosinach N, Kaliyaperumal R, Bernabé CH,
               et  al. Applying the FAIR principles to data in a hospital:      doi: 10.1371/journal.pone.0253925
               Challenges and opportunities in a pandemic. J  Biomed   93.  Jumper  J,  Evans  R,  Pritzel  A,  et  al.  Highly accurate protein
               Semant. 2022;13:12.
                                                                  structure prediction with AlphaFold. Nature. 2021;596:583-589.
               doi: 10.1186/s13326-022-00263-7
                                                                  doi: 10.1038/s41586-021-03819-2
            83.  Laurencin CT, McClinton A. The COVID-19 pandemic:   94.  Gunasekeran  DV,  Tseng  RMWW,  Tham  YC,  Wong  TY.
               A  call to action to identify and address racial and ethnic   Applications of digital health for public health responses to
               disparities. J Racial Ethn Health Disparities. 2020;7:398-402.
                                                                  COVID-19: A systematic scoping review of artificial intelligence,
               doi: 10.1007/s40615-020-00756-0                    telehealth and related technologies. NPJ Digital Med. 2021;4:40.
            84.  Garcia Elorrio E, Arrieta J, Arce H,  et al. The COVID-     doi: 10.1038/s41746-021-00412-9
               19 pandemic: A call to action for health systems in Latin   95.  Ioannidis JPA, Cripps S, Tanner MA. Forecasting for
               America to strengthen quality of care.  Int J Qual Health   COVID-19 has failed. Int J Forecast. 2022;38:423-438.
               Care. 2021;33:mzaa062.
                                                                  doi: 10.1016/j.ijforecast.2020.08.004
               doi: 10.1093/intqhc/mzaa062
                                                               96.  Jayanthi P, Rai BK, Muralikrishna I. The potential of
            85.  Manjarrés Á, Fernández-Aller C, López-Sánchez M,   quantum computing in healthcare. In:  Technology Road
               Rodríguez-Aguilar  JA,  Sierra  Castañer  M.  Artificial   Mapping for Quantum Computing and Engineering. United
               intelligence for a fair, just, and equitable world. IEEE Technol   States: IGI Global; 2022. p. 81-101.
               Soc Mag. 2021;40:19-24.
                                                                  doi: 10.4018/978-1-7998-9183-3.ch006
               doi: 10.1109/MTS.2021.3056292
                                                               97.  John G, Sahajpal NS, Mondal AK, et al. Next-generation
            86.  Sinha A, Rathi M. COVID-19 prediction using AI analytics   sequencing (NGS) in COVID-19: A tool for SARS-CoV-2
               for South Korea. Appl Intell (Dordr). 2021;51:8579-8597.
                                                                  diagnosis,  monitoring  new  strains  and  phylodynamic
               doi: 10.1007/s10489-021-02352-z                    modeling in molecular epidemiology. Curr Issues Mol Biol.


            Volume 1 Issue 2 (2024)                         14                               doi: 10.36922/aih.2401
   15   16   17   18   19   20   21   22   23   24   25