Page 118 - AIH-1-3
P. 118

Artificial Intelligence in Health                                 ISM: A new multi-view space-learning model



            11.  Yang M, Hussain I. Unsupervised multi-view k-means   2024;217:109341.
               clustering algorithm. IEEE Access. 2023;11:13574-13593.
                                                                  doi: 10.1016/j.sigpro.2023.109341
               doi: 10.1109/access.2023.3243133
                                                               24.  Fu L, Lin P, Vasilakos AV, Wang S. An overview of recent
            12.  Hussain  I,  Sinaga  KP,  Yang  M.  Unsupervised  multiview   multi-view clustering. Neurocomputing. 2020;402:148-161.
               fuzzy  C-means  clustering  algorithm.  Electronics.      doi: 10.1016/j.neucom.2020.02.104
               2023;12(21):4467-4467.
                                                               25.  Dua D, Graff C. UCI Machine Learning ℝepository. Irvine,
               doi: 10.3390/electronics12214467
                                                                  CA: University of California, School of Information and
            13.  Smilde  AK, Westerhuis  JA, de Jong S.  A  framework  for   Computer Science; 2017. Available from: https://archive.ics.
               sequential  multiblock  component  methods.  J  Chemometr.   uci.edu/dataset/72/multiple+features
               2003;17(6):323-337.
                                                               26.  Boldina G, Fogel P, Rocher C, Bettembourg C, Luta G,
               doi: 10.1002/cem.811                               Augé F. A2Sign: Agnostic algorithms for signatures-a
            14.  Trendafilov NT. Stepwise estimation of common principal   universal method for identifying molecular signatures from
               components. Comput Stat Data Anal. 2010;54(12):3446-3457.  transcriptomic datasets prior to cell-type deconvolution.
                                                                  Bioinformatics. 2021;38(4):1015-1021.
               doi: 10.1016/j.csda.2010.03.010
                                                                  doi: 10.1093/bioinformatics/btab773
            15.  Tenenhaus A, Tenenhaus M. Regularized generalized
               canonical correlation analysis for multiblock or multigroup   27.  Lewis DD, Yang Y, Rose TG, Li F. RCV1: A new benchmark
               data analysis. Eur J Oper Res. 2014;238(2):391-403.  collection for text categorization research. J Mach Learn ℝes.
                                                                  2004;5:361-397.
               doi: 10.1016/j.ejor.2014.01.008
                                                               28.  Brbic M, Piškorec M, Vidulin V, Kriško A, Šmuc T, Supek F.
            16.  Zhang C, Hu Q, Fu H, Zhu PF, Cao X. Latent Multi-View   The landscape of microbial phenotypic traits and associated
               Subspace  Clustering.  In:  IEEE  Conference  on  Computer   genes. Nucleic Acids ℝes. 2016;44:10074-10090.
               Vision and Pattern ℝecognition (CVPℝ); 2017. p. 4333-4341.
                                                                  doi: 10.1093/nar/gkw964
               doi: 10.1109/cvpr.2017.461
                                                               29.  Swanson E, Lord C, Reading J, et al. Simultaneous trimodal
            17.  Chen M, Huang L, Wang C, Huang D. Multi-view clustering   single-cell measurement of transcripts, epitopes, and
               in latent embedding space.  Proc  AAAI  Conf  Artif  Intell.   chromatin accessibility using TEA-seq. Elife. 2021;10:e63632.
               2020;34(4):3513-3520.
                                                                  doi: 10.7554/eLife.63632
               doi: 10.1609/aaai.v34i04.5756
                                                               30.  Hirschman AO. The paternity of an index. Am Econ ℝev.
            18.  Leppäaho E, Ammad-ud-din M, Kaski S. GFA: Exploratory   1964;54:761-762.
               analysis of multiple data sources with group factor analysis.
               J Mach Learn ℝes. 2017;18(1):1294-1298.         31.  Fogel P, Geissler C, Morizet N, Luta G. On rank selection
                                                                  in non-negative matrix factorization using concordance.
            19.  Zhao S, Gao C, Mukherjee S, Engelhardt BE. Bayesian group   Mathematics. 2023;11(22):4611.
               factor analysis with structured sparsity. J Mach Learn ℝes.
               2016;17(1):6868-6914.                              doi: 10.3390/math11224611
            20.  Zhang  X,  Zhao  L,  Zong  L, Liu  X,  Yu  H. Multi-view   32.  Badeau R, Bertin N, Vincent E. Stability analysis of
               Clustering via Multi-Manifold Regularized Nonnegative   multiplicative update algorithms and application to
               Matrix Factorization. In: IEEE International Conference on   nonnegative matrix factorization. IEEE Trans Neural Netw.
               Data Mining; 2014. p. 1103-1108.                   2010;21(12):1869-1881.
               doi: 10.1109/icdm.2014.19                          doi: 10.1109/tnn.2010.2076831
            21.  Huizing G, Deutschmann IM, Peyré G, Cantini L. Paired   33.  Donoho DL, Stodden V. When does non-negative matrix
               single-cell multi-omics data integration with Mowgli. Nat   factorization give a correct decomposition into parts? Adv
               Commun. 2023;14(1):7711.                           Neural Inf Process Syst. 2003;16:1141-1148.
               doi: 10.1038/s41467-023-43019-2                    doi: 10.7916/d88d05n7
            22.  Brbic M, Kopriva I. Multi-view low-rank sparse subspace   34.  Hubert L, Arabie P. Comparing partitions.  J  Classif.
               clustering. Pattern ℝecognit. 2018;73:247-258.     1985;2(1):193-218.
               doi: 10.1016/j.patcog.2017.08.024                  doi: 10.1007/BF01908075
            23.  Dong Y, Che H, Leung MF, Liu C, Yan Z. Centric  graph   35.  Strehl A, Ghosh J. Cluster ensembles-A knowledge reuse
               regularized  log-norm  sparse  non-negative  matrix  framework for combining multiple partitions. J Mach Learn
               factorization for multi-view  clustering.  Signal Process.   ℝes. 2002;3:583-617.


            Volume 1 Issue 3 (2024)                        112                               doi: 10.36922/aih.3427
   113   114   115   116   117   118   119   120   121   122   123