Page 119 - AIH-1-3
P. 119

Artificial Intelligence in Health                                 ISM: A new multi-view space-learning model



               doi: 10.1162/153244303321897735                 42.  Hoyer  PO.  Non-negative  matrix  factorization  with
                                                                  sparseness constraints. J Mach Learn ℝes. 2004;5:1457-1469.
            36.  Fowlkes EB, Mallows CL. A  method for comparing two
               hierarchical clusterings: Rejoinder.  J  Am Stat Assoc.      doi: 10.48550/arXiv.cs/0408058
               1983;78(383):553-569.                           43.  Potluru VK, Plis S, Le Roux J, Pearlmutter BA, Calhoun VD,
               doi: 10.2307/2288123                               Hayes TP. Block Coordinate Descent for Sparse NMF.
                                                                  International Conference on Learning Representations
            37.  Demaine ED, Hesterberg A, Koehler F, Lynch J, Urschel JC.   (ICLR); 2013.
               Multidimensional Scaling: Approximation and Complexity.
               In:  Proceedings  of the  38   International  Conference on   44.  Boutsidis C, Gallopoulos E. SVD based initialization: A head
                                   th
               Machine Learning; 2021. p. 2568-2578.              start for nonnegative matrix factorization. Pattern ℝecognit.
                                                                  2008;41(4):1350-1362.
               doi: 10.48550/arXiv.2109.11505
                                                                  doi: 10.1016/j.patcog.2007.09.010
            38.  Zhai Z, Lei YL, Wang R, Xie Y. Supervised capacity preserving
               mapping: A  clustering guided visualization method for   45.  Ma A, Wang X, Li J,  et al. Single-cell biological network
               scRNA-seq Data. Bioinformatics. 2022;38(9):2496-2503.  inference using a heterogeneous  graph transformer.  Nat
                                                                  Commun. 2023;14(1):964.
               doi: 10.1093/bioinformatics/btac131
                                                                  doi: 10.1038/s41467-023-36559-0
            39.  Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
               Machine Learning in Python. arXiv [Preprint]; 2011.  46.  Vaswani A, Shazeer NM, Parmar N, et al. Attention is all you
                                                                  need. Neural Inf Process Syst. 2017;30:5998-6008.
               doi: 10.48550/arXiv.1201.0490
                                                               47.  Park J, Jin IH, Jeon M. How social networks influence human
            40.  Fogel P, Hawkins DM, Beecher C, Luta G, Young SS. A tale   behavior: An integrated latent space approach for differential
               of two matrix factorizations. Am Stat. 2013;67(4):207-218.  social influence. Psychometrika. 2023;88:1529-1555.
               doi: 10.1080/00031305.2013.845607                  doi: 10.1007/s11336-023-09934-5
            41.  Brunet JP, Tamayo P, Golub TR, Mesirov JP. Metagenes and   48.  Pinel P, Guichaoua G, Najm M, et al. Exploring isofunctional
               molecular pattern discovery using matrix factorization. Proc   molecules: Design of a benchmark and evaluation of
               Natl Acad Sci U S A. 2004;101(12):4164-4169.       prediction performance. Mol Inform. 2023;42(4):e2200216.
               doi: 10.1073/pnas.0308531101                       doi: 10.1002/minf.202200216








































            Volume 1 Issue 3 (2024)                        113                               doi: 10.36922/aih.3427
   114   115   116   117   118   119   120   121   122   123   124