Page 141 - AIH-1-3
P. 141
Artificial Intelligence in Health ADRD caregiver experiences on Reddit
8. Vu M, Mangal R, Stead T, Lopez-Ortiz C, Ganti L. Impact doi: 10.1145/2133806.2133826
of Alzheimer’s disease on caregivers in the United States. 19. Grootendorst MR. BERTopic: Neural topic modeling with a
Health Psychol Res. 2022;10(3):37454.
class-based TF-IDF procedure. ArXiv. 2022.
doi: 10.52965/001c.37454
doi: 10.48550/arXiv.2203.05794
9. Sołtys A, Tyburski E. Predictors of mental health problems in 20. Hutto CJ, Gilbert E. VADER: A Parsimonious Rule-based
formal and informal caregivers of patients with Alzheimer’s Model for Sentiment Analysis of Social Media Text. In:
disease. BMC Psychiatry. 2020;20(1):435.
Proceedings of the 8 International Conference on Weblogs
th
doi: 10.1186/s12888-020-02822-7 and Social Media. ICWSM; 2015.
10. Shoults CC, Rutherford MW, Kemp AS, et al. Analysis of 21. Laureate CDP, Buntine W, Linger H. A systematic review of
caregiver burden expressed in social media discussions. Int J the use of topic models for short text social media analysis.
Environ Res Public Health. 2023;20(3):1933. Artif Intell Rev. 2023;56:14223-14255.
doi: 10.3390/ijerph20031933 doi: 10.1007/s10462-023-10471-x
11. Lobo EH, Johnson T, Frølich A, et al. Utilization of social 22. Kherwa P, Bansal P. Topic modeling: A comprehensive
media communities for caregiver information support in review. EAI Endorsed Trans Scalable Inf Syst. 2019;7(24):e2.
stroke recovery: An analysis of content and interactions.
PLoS One. 2022;17(1):e0262919. doi: 10.4108/eai.13-7-2018.159623
23. Ramamoorthy T, Kulothungan V, Mappillairaju B. Topic
doi: 10.1371/journal.pone.0262919
modeling and social network analysis approach to explore
12. Zapcic I, Fabbri M, Karandikar S. Using Reddit as a source for diabetes discourse on Twitter in India. Front Artif Intell.
recruiting participants for in-depth and phenomenological 2024;7:1329185.
research. Int J Qual Methods. 2023;22:16094069231162674.
doi: 10.3389/frai.2024.1329185
doi: 10.1177/16094069231162674
24. Yue L, Chen W, Li X, Zuo W, Yin M. A survey of sentiment
13. Ni C, Malin B, Song L, Jefferson A, Commiskey P, Yin Z. analysis in social media. Knowl Inf Syst. 2019;60:617-663.
“Rough Day … Need a Hug”: Learning challenges and
experiences of the Alzheimer’s disease and related dementia doi: 10.1007/s10115-018-1236-4
caregivers on Reddit. Proc Int AAAI Conf Web Soc Media. 25. Rodríguez-Ibánez M, Casánez-Ventura A, Castejón-Mateos F,
2022;16(1):711-722. Cuenca-Jiménez, PM. A review on sentiment analysis from
social media platforms. Expert Syst Appl. 2023;223:119862.
doi: 10.1609/icwsm.v16i1.19328
doi: 10.1016/j.eswa.2023.119862
14. Bird S, Klein, E, Loper, E. Natural Language Processing with
Python: Analyzing Text with the Natural Language Toolkit. 26. Wankhade M, Rao ACS, Kulkarni C. A survey on sentiment
United States: O’Reilly Media, Inc.; 2009. analysis methods, applications, and challenges. Artif Intell
Rev. 2022;55:5731-5780.
15. Méndez JR, Iglesias EL, Fdez-Riverola F, Díaz F,
Corchado JM. Tokenising, Stemming and Stopword Removal doi: 10.1007/s10462-022-10144-1
on Anti-spam Filtering Domain. Heidelberg: Springer Berlin; 27. Caschera MC, Ferri F, Grifoni P. Sentiment Analysis from
2006. p. 449-458.
Textual to Multimodal Features in Digital Environments.
16. Honnibal M, Montani I, Van Landeghem S, Boyd A. spaCy: In: Proceedings of the 8 International Conference on
th
Industrial-strength Natural Language Processing in Python. Management of Digital EcoSystems (MEDES). New York,
United States: Zenodo; 2020. USA: Association for Computing Machinery; 2016.
p. 137-144.
17. Murakami A, Thompson P, Hunston S, Vajn D. What is
this corpus about?’: Using topic modelling to explore a doi: 10.1145/3012071.3012089
specialised corpus. Corpora. 2017;12:243-277.
28. Xu QA, Chang V, Jayne C. A systematic review of social
doi: 10.3366/cor.2017.0118 media-based Sentiment analysis: Emerging trends and
challenges. Decis Anal J. 2022;3:100073.
18. Blei DM. Probabilistic topic models. Commun ACM.
2012;55(4):77-84. doi: 10.1016/j.dajour.2022.100073
Volume 1 Issue 3 (2024) 135 doi: 10.36922/aih.3075

