Page 34 - AIH-1-4
P. 34

Artificial Intelligence in Health                                Optimized clustering in medical app detection



            References                                            Mahmood AM. Undersampled k-means approach for
                                                                  handling imbalanced distributed data.  Prog Artif Intell.
            1.   Moore AW, Papagiannaki K. Toward the accurate    2014;3(1):29-38.
               identification of network applications.  Lect Notes Comput
               Sci. 2005;3431:41-54.                              doi: 10.1007/s13748-014-0040-7
               doi: 10.1007/978-3-540-31966-5_4                12.  Wu J. The uniform effect of k-means clustering. In: Advances
                                                                  in K-means Clustering. Germany: Springer; 2012. p. 17-35.
            2.   Zink T, Maier M. Analysis and Efficient Classification of P2P
               File Sharing Traffic. Technical Report KN-2010-DiSy-02.      doi: 10.1007/978-3-642-31559-4_2
               Germany: University of Konstanz; 2010.          13.  Mindinventory. Mobile App for Healthcare. Available from:
               doi: 10.5281/zenodo.1234567                        https://www.mindinventory.com/blog/advantages-mobile-
                                                                  app-for-healthcare [Last accessed on 2022 Dec 20].
            3.   Finsterbusch M, Richter C, Rocha E, Müller JA, Hanssgen K.
               A survey of payload-based traffic classification approaches.   14.  Haffey F, Brady RR, Maxwell S. A  comparison of the
               IEEE Commun Surv Tuto. 2014;16(2):1135-1156.       reliability of smartphone apps for opioid conversion. Drug
                                                                  Saf. 2013;36(2):111-117.
               doi: 10.1109/SURV.2013.100613.00161
                                                                  doi: 10.1007/s40264-013-0021-5
            4.   Smith R, Estan C, Jha S, Kong S. Deflating the Big Bang: Fast
               and Scalable Deep Packet Inspection with Extended Finite   15.  Wolf JA, Moreau JF, Akilov O, et al. Diagnostic inaccuracy
               Automata.  In:  Proceedings of the ACM SIGCOMM 2008   of smartphone applications for melanoma detection. JAMA
               Conference on Data Communication; 2008. p. 207-218.  Dermatol. 2013;149(4):422-426.
               doi: 10.1145/1402958.1402983                       doi: 10.1001/jamadermatol.2013.1241
            5.   Esteves AF, Inácio PR, Pereira M, et al. On-Line Detection   16.  Rosser BA, Eccleston C. Smartphone applications for pain
               of Encrypted Traffic Generated by  Mesh-Based  Peer-to-  management. J Telemed Telecare. 2011;17(6):308-312.
               Peer Live Streaming Applications: The  case of Goalbit.      doi: 10.1258/jtt.2011.110202
               In:  2011 IEEE 10   International Symposium on Network
                             th
               Computing and Applications. United States: IEEE; 2011.   17.  Ferrero NA, Morrell DS, Burkhart CN. Skin scan:
               p. 223-228.                                        A  demonstration of the need for FDA regulation of
                                                                  medical apps on iPhone. J Am Acad Dermatol. 2013;68(3):
               doi: 10.1109/nca.2011.38.                          515-516.
            6.   Parekh JJ, Wang K, Stolfo SJ. Privacy-Preserving Payload-     doi: 10.1016/j.jaad.2012.08.049
               Based Correlation for Accurate Malicious Traffic Detection.
               In: Proceedings of the 2006 SIGCOMM Workshop on Large-  18.  Misra S, Lewis TL, Aungst TD. Medical application use
               Scale Attack Defense; 2006. p. 99-106.             and the need for further research and assessment for
                                                                  clinical practice: Creation and integration of standards for
               doi: 10.1145/1162666.1162679                       best practice to alleviate poor application design.  JAMA
            7.   Ahmad A, Dey L. A  k-mean clustering algorithm for   Dermatol. 2013;149(6):661-662.
               mixed numeric and categorical data.  Data Knowl Eng.      doi: 10.1001/jamadermatol.2013.351
               2007;63(2):503-527.
                                                               19.  Buijink AW, Visser BJ, Marshall L. Medical apps for
               doi: 10.1016/j.datak.2007.03.016                   smartphones:  Lack  of  evidence  undermines  quality  and
            8.   Bezdek J, Ehrlich R. Numerical methods for fuzzy clustering.   safety. BMJ Evid Based Med. 2013;18(3):90-92.
               Comput Geosci. 1984;10:191-203.
                                                                  doi: 10.1136/eb-2013-101375
               doi: 10.1016/0098-3004(84)90020-X               20.  McCartney M. How do we know whether medical apps
            9.   Zhou ZH, Liu XY. Training cost-sensitive neural networks   work? BMJ. 2013;346:f1811.
               with methods addressing the class imbalance problem. IEEE      doi: 10.1136/bmj.f1190
               Trans Knowl Data Eng. 2005;18(1):63-77.
                                                               21.  Hamilton A, Brady RW. Medical professional involvement
               doi: 10.1109/TKDE.2005.14
                                                                  in smartphone “apps” in dermatology.  Br J Dermatol.
            10.  Anand R, Mehrotra KG, Mohan CK, Ranka S. An improved   2012;167(1):220-221.
               algorithm for neural network classification of imbalanced      doi: 10.1111/j.1365-2133.2012.11081.x
               training sets. IEEE Trans Neural Netw. 1993;4(6):962-969.
                                                               22.  Huckvale K, Car M, Morrison C, Car J. Apps for asthma self-
               doi: 10.1109/72.258821
                                                                  management: A systematic assessment of content and tools.
            11.  Kumar NS, Rao KN, Govardhan A, Reddy KS,         BMC Med. 2012;10:144.



            Volume 1 Issue 4 (2024)                         28                               doi: 10.36922/aih.2585
   29   30   31   32   33   34   35   36   37   38   39