Page 17 - AIH-2-1
P. 17

Artificial Intelligence in Health                                           AI in higher medical education



               doi: 10.3390/bdcc7010035                        46.  Katznelson G, Gerke S. The need for health AI ethics
                                                                  in  medical  school  education.  Adv Health Sci Educ.
            33.  Alkaissi H, Mcfarlane SI. Artificial hallucinations in
               ChatGPT: Implications in scientific writing.  Cureus.   2021;26:1447-1458.
               2023;15:e35179.                                    doi: 10.1007/s10459-021-10040-3
               doi: 10.7759/cureus.35179                       47.  Ötleş E, James CA, Lomis KD, Woolliscroft JO. Teaching
                                                                  artificial intelligence as a fundamental toolset of medicine.
            34.  Available  from:  https://lawlibguides.sandiego.edu/c.
               php?g=1317323&p=9686671 [Last accessed on 2024 Oct 18].  Cell Rep Med. 2022;3(12):100824.
                                                                  doi: 10.1016/J.XCRM.2022.100824
            35.  Beilby  K,  Hammarberg  K.  ChatGPT:  A  reliable  fertility
               decision-making tool? Hum Reprod. 2024;39:443-447.  48.  Zarei M, Eftekhari Mamaghani H, Abbasi A, Hosseini MS.
                                                                  Application of artificial intelligence in medical education:
               doi: 10.1093/humrep/dead272
                                                                  A  review  of  benefits,  challenges,  and  solutions.  Med Clín
            36.  Funk PF, Hoch CC, Manuel F,  et al. Citation: ChatGPT’s   Práct. 2024;7(2):100422.
               response consistency: A  study on repeated queries of
               medical examination questions.  J  Investig Health Psychol      doi: 10.1016/J.MCPSP.2023.100422
               Educ. 2024;14:657-668.                          49.  Krive J, Isola M, Chang L, Patel T, Anderson M, Sreedhar R.
               doi: 10.3390/ejihpe14030043                        Grounded in reality: Artificial intelligence in medical
                                                                  education. JAMIA Open. 2023;6:ooad037.
            37.  Mu Y, He D. The potential applications and challenges of
               ChatGPT in the medical field. Int J Gen Med. 2024;17:817-826.     doi: 10.1093/jamiaopen/ooad037
               doi: 10.2147/ijgm.s456659                       50.  Piorkowski A, Obuchowicz R, Najjar R. Redefining
                                                                  radiology: A review of artificial intelligence integration in
            38.  Carr SE, Canny BJ, Wearn A, et al. Twelve tips for medical   medical imaging. Diagnostics (Basel). 2023;13:2760.
               students experiencing an interruption in their academic
               progress. Med Teach. 2022;44(10):1081-1086.        doi: 10.3390/diagnostics13172760
               doi: 10.1080/0142159X.2021.1921134              51.  Brady AP, Allen B, Chong J,  et al. STATEMENT Open
                                                                  Access. J Med Imaging Radiat Oncol. 15.
            39.  Shen Y, Heacock L, Elias J, et al. ChatGPT and other large
               language  models  are  double-edged  swords.  Radiology.      doi: 10.1186/s13244-023-01541-3
               2023;307(2):e230163.                            52.  Choudhury A, Elkefi S. Acceptance, initial trust formation,
               doi: 10.1148/radiol.230163                         and human biases in artificial intelligence: Focus on
                                                                  clinicians. Front Digit Health. 2022;4:966174.
            40.  Lee H. The rise of ChatGPT: Exploring its potential in
               medical education. 2023.                           doi: 10.3389/fdgth.2022.966174
               doi: 10.1002/ase.2270                           53.  Pagano TP, Loureiro RB, Lisboa FVN,  et al. Bias and
                                                                  unfairness in machine learning models: A systematic review
            41.  Saleem N, Mufti T, Sohail SS, Madsen DØ. ChatGPT as an   on datasets, tools, fairness metrics, and identification and
               innovative heutagogical tool in medical education. Cogent   mitigation methods. Big Data Cogn. Comput. 2023;7:15.
               Education. 2024;11(1).
                                                                  doi: 10.3390/bdcc7010015
               doi: 10.1080/2331186X.2024.2332850
                                                               54.  Pessach D, Shmueli E. A  review on fairness in machine
            42.  Emir B, Yurdem T, Ozel T,  et al. Artificial intelligence   learning. ACM Comput Surv. 2022;55(3):51.
               readiness status of medical faculty students. Konuralp Med
               J. 2024;16(1):88-95.                               doi: 10.1145/3494672
               doi: 10.18521/ktd.1387826                       55.  Rudnicka Z, Proniewska K, Perkins M, Pregowska A. Cardiac
                                                                  healthcare digital twins supported by artificial intelligence-
            43.  Rezazadeh H, Ahmadipour H, Salajegheh M. Psychometric   based algorithms and extended reality-a systematic review.
               evaluation of Persian version of medical artificial intelligence   Electronics (Basel). 2024;13(5):866.
               readiness scale for medical students.  BMC Med Educ.
               2023;23(1):527.                                    doi: 10.3390/electronics13050866
               doi: 10.1186/s12909-023-04516-6                 56.  Ueda D, Kakinuma T, Fujita S,  et al. Fairness of artificial
                                                                  intelligence in healthcare: Review and recommendations.
            44.  Dennett D. The Self as a Center of Narrative Gravity. Self and   Jpn J Radiol. 2024;42:3-15.
               Consciousness: Multiple Perspectives. Hillsdale, NJ: Lawrence
               Erlbaum; 1992. p. 53.                              doi: 10.1007/s11604-023-01474-3
            45.  Acharya V, Padhan P, Bahinipati J, et al. Artificial intelligence   57.  Shen D, Liu T. Grand challenges in AI in radiology. Front
               in medical education. J Integr Med Res. 2023;1(3):87-91.  Radiol. 2021;1:629992.


            Volume 2 Issue 1 (2025)                         11                               doi: 10.36922/aih.3276
   12   13   14   15   16   17   18   19   20   21   22