Page 18 - AIH-2-1
P. 18
Artificial Intelligence in Health AI in higher medical education
doi: 10.3389/fradi.2021.629992 doi: 10.1007/s11042-023-17968-1
58. Park Y, Hu J. Bias in artificial intelligence: Basic primer. Clin 69. Prajapati JB, Kumar A, Singh S, et al. Artificial intelligence-
J Am Soc Nephrol. 2023;18(3):394-396. assisted generative pretrained transformers for applications
of ChatGPT in higher education among graduates. SN Soc
doi: 10.2215/CJN.0000000000000078
Sci. 2024;4:19.
59. Meyers PM, Gabelloni M, Wagner M, Schweitzer M, doi: 10.1007/s43545-023-00818-0
Khosravi P. Artificial intelligence in neuroradiology:
A scoping review of some ethical challenges. Front Radiol. 70. Narayanan S, Ramakrishnan R, Durairaj E, Das A. Artificial
2023;3:1149461. intelligence revolutionizing the field of medical education.
Cureus. 2023;15(11):e49604.
doi: 10.3389/fradi.2023.1149461
doi: 10.7759/cureus.49604
60. Bell LC, Shimron E. Sharing data is essential for the future of
AI in medical imaging. Radiol Artif Intell. 2023;6(1):e230337. 71. Lie SS, Helle N, Sletteland NV, Dubland Vikman M,
Bonsaksen T. Implementation of virtual reality in health
doi: 10.1148/ryai.230337
professions education: Scoping Review. JMIR Res Protoc.
61. Bernstein MH, Atalay MK, Dibble EH, et al. Can incorrect 2022;11:e37222.
artificial intelligence (AI) results impact radiologists, and doi: 10.2196/37222
if so, what can we do about it? A multi-reader pilot study
of lung cancer detection with chest radiography Chest 72. Dhar E, Upadhyay U, Huang Y, et al. A scoping review to
radiograph DSI Data Science Institute FN False negative FP assess the effects of virtual reality in medical education and
False positive GLMM Generalized linear mixed modeling clinical care. Digit Health. 2023;9:20552076231158022.
PACS Picture archiving and communication system. Eur doi: 10.1177/20552076231158022
Radiol. 2023;33:8263-8269.
73. Kim HY, Kim EY, Dominguez-Morales M, Billis A, Kim HY,
doi: 10.1007/s00330-023-09747-1 Kim EY. Effects of medical education program using virtual
62. Eltawil FA, Atalla M, Boulos E, Amirabadi A, Tyrrell PN. reality: A systematic effects of medical education program
Analyzing barriers and enablers for the acceptance of using virtual reality: A systematic review and meta-analysis.
artificial intelligence innovations into radiology practice: Int J Environ Res Public Health. 2023;20:3895.
A scoping review. Tomography. 2023;9(4):1443-1455. doi: 10.3390/ijerph20053895
doi: 10.3390/tomography9040115 74. Leng L. Challenge, integration, and change: ChatGPT
63. Kelly BS, Quinn C, Belton N, et al. Cybersecurity and future anatomical education. Med Educ Online.
considerations for radiology departments involved with 2024;29(1):2304973.
artificial intelligence. Eur Radiol. 2023;33:8833-8841. doi: 10.1080/10872981.2024.2304973
doi: 10.1007/s00330-023-09860-1 75. Pedram S, Kennedy G, Sanzone S. Assessing the validity
64. Available from: https://www.fda.gov/medical-devices/ of VR as a training tool for medical students. Virtual Real.
software-medical-device-samd/artificial-intelligence-and- 2024;28:15.
machine-learning-aiml-enabled-medical-devices [Last doi: 10.1007/s10055-023-00912-x
accessed on 2024 Oct 08].
76. Mergen M, Meyerheim M, Graf N. Reviewing the current
65. Available from: https://www.gov.uk/government/ state of virtual reality integration in medical education - a
organisations/medicines-and-healthcare-products- scoping review protocol. Syst Rev. 2023;12(1):97.
regulatory-agency[Last accessed on 2024 Oct 08].
doi: 10.1186/s13643-023-02266-6
66. UK Digital Health - the Future of Software as a Medical
Device. Available from: https://www.gov.uk/government/ 77. Mergen M, Meyerheim M, Graf N. Towards integrating
publications/software-and-ai-as-a-medical-device-change- virtual reality into medical curricula: A single center student
programme/software-and-ai-as-a-medical-device-change- survey. Educ Sci. 2023;13:477.
programme-roadmap [Last accessed on 2024 Oct 18]. doi: 10.3390/educsci13050477
67. Khazane H, Ridouani M, Salahdine F, Kaabouch N. 78. Available from: https://www.technologyreview.
A holistic review of machine learning adversarial attacks in com/2023/08/07/1077324/ai-language-models-are-rife-
IoT networks. Future Internet. 2024;16:32. with-political-biases [Last accessed on 2024 Oct 08].
doi: 10.3390/fi16010032 79. Feng Y, Chen Z, Kang Z, et al. JailbreakLens: Visual Analysis
of Jailbreak Attacks against Large Language Models.
68. Tools M, Tsai MJ, Lin PY. Medical images under tampering.
Multimed Tools Appl. 2024;83:65407-65439. doi: 10.48550/arXiv.2404.08793
Volume 2 Issue 1 (2025) 12 doi: 10.36922/aih.3276

