Page 18 - AIH-2-1
P. 18

Artificial Intelligence in Health                                           AI in higher medical education



               doi: 10.3389/fradi.2021.629992                     doi: 10.1007/s11042-023-17968-1
            58.  Park Y, Hu J. Bias in artificial intelligence: Basic primer. Clin   69.  Prajapati JB, Kumar A, Singh S, et al. Artificial intelligence-
               J Am Soc Nephrol. 2023;18(3):394-396.              assisted generative pretrained transformers for applications
                                                                  of ChatGPT in higher education among graduates. SN Soc
               doi: 10.2215/CJN.0000000000000078
                                                                  Sci. 2024;4:19.
            59.  Meyers PM, Gabelloni M, Wagner M, Schweitzer M,      doi: 10.1007/s43545-023-00818-0
               Khosravi P. Artificial intelligence in neuroradiology:
               A scoping review of some ethical challenges. Front Radiol.   70.  Narayanan S, Ramakrishnan R, Durairaj E, Das A. Artificial
               2023;3:1149461.                                    intelligence revolutionizing the field of medical education.
                                                                  Cureus. 2023;15(11):e49604.
               doi: 10.3389/fradi.2023.1149461
                                                                  doi: 10.7759/cureus.49604
            60.  Bell LC, Shimron E. Sharing data is essential for the future of
               AI in medical imaging. Radiol Artif Intell. 2023;6(1):e230337.  71.  Lie  SS,  Helle  N,  Sletteland  NV,  Dubland  Vikman  M,
                                                                  Bonsaksen T. Implementation of virtual reality in health
               doi: 10.1148/ryai.230337
                                                                  professions education: Scoping Review. JMIR Res Protoc.
            61.  Bernstein MH, Atalay MK, Dibble EH, et al. Can incorrect   2022;11:e37222.
               artificial intelligence (AI) results impact radiologists, and      doi: 10.2196/37222
               if so, what can we do about it? A multi-reader pilot study
               of lung cancer detection with chest radiography Chest   72.  Dhar E, Upadhyay U, Huang Y, et al. A scoping review to
               radiograph DSI Data Science Institute FN False negative FP   assess the effects of virtual reality in medical education and
               False positive GLMM Generalized linear mixed modeling   clinical care. Digit Health. 2023;9:20552076231158022.
               PACS Picture archiving and communication system.  Eur      doi: 10.1177/20552076231158022
               Radiol. 2023;33:8263-8269.
                                                               73.  Kim HY, Kim EY, Dominguez-Morales M, Billis A, Kim HY,
               doi: 10.1007/s00330-023-09747-1                    Kim EY. Effects of medical education program using virtual
            62.  Eltawil FA, Atalla M, Boulos E, Amirabadi A, Tyrrell PN.   reality: A systematic effects of medical education program
               Analyzing barriers and enablers for the acceptance of   using virtual reality: A systematic review and meta-analysis.
               artificial intelligence innovations into radiology practice:   Int J Environ Res Public Health. 2023;20:3895.
               A scoping review. Tomography. 2023;9(4):1443-1455.     doi: 10.3390/ijerph20053895
               doi: 10.3390/tomography9040115                  74.  Leng L. Challenge, integration, and change: ChatGPT
            63.  Kelly BS, Quinn C, Belton N,  et al. Cybersecurity   and future  anatomical  education.  Med  Educ  Online.
               considerations for radiology departments involved with   2024;29(1):2304973.
               artificial intelligence. Eur Radiol. 2023;33:8833-8841.     doi: 10.1080/10872981.2024.2304973
               doi: 10.1007/s00330-023-09860-1                 75.  Pedram S, Kennedy G, Sanzone S. Assessing the validity
            64.  Available  from:  https://www.fda.gov/medical-devices/  of VR as a training tool for medical students. Virtual Real.
               software-medical-device-samd/artificial-intelligence-and-  2024;28:15.
               machine-learning-aiml-enabled-medical-devices  [Last     doi: 10.1007/s10055-023-00912-x
               accessed on 2024 Oct 08].
                                                               76.  Mergen M, Meyerheim M, Graf N. Reviewing the current
            65.  Available  from:  https://www.gov.uk/government/  state of virtual reality integration in medical education - a
               organisations/medicines-and-healthcare-products-   scoping review protocol. Syst Rev. 2023;12(1):97.
               regulatory-agency[Last accessed on 2024 Oct 08].
                                                                  doi: 10.1186/s13643-023-02266-6
            66.  UK Digital Health  -  the Future of Software as a Medical
               Device. Available from: https://www.gov.uk/government/  77.  Mergen M, Meyerheim M, Graf N. Towards integrating
               publications/software-and-ai-as-a-medical-device-change-  virtual reality into medical curricula: A single center student
               programme/software-and-ai-as-a-medical-device-change-  survey. Educ Sci. 2023;13:477.
               programme-roadmap [Last accessed on 2024 Oct 18].     doi: 10.3390/educsci13050477
            67.  Khazane H, Ridouani M, Salahdine F, Kaabouch N.   78.  Available  from:  https://www.technologyreview.
               A holistic review of machine learning adversarial attacks in   com/2023/08/07/1077324/ai-language-models-are-rife-
               IoT networks. Future Internet. 2024;16:32.         with-political-biases [Last accessed on 2024 Oct 08].
               doi: 10.3390/fi16010032                         79.  Feng Y, Chen Z, Kang Z, et al. JailbreakLens: Visual Analysis
                                                                  of Jailbreak Attacks against Large Language Models.
            68.  Tools M, Tsai MJ, Lin PY. Medical images under tampering.
               Multimed Tools Appl. 2024;83:65407-65439.          doi: 10.48550/arXiv.2404.08793


            Volume 2 Issue 1 (2025)                         12                               doi: 10.36922/aih.3276
   13   14   15   16   17   18   19   20   21   22   23