Page 49 - AIH-2-3
P. 49
Artificial Intelligence in Health Omnichain FL in healthcare AI
meets blockchain in edge computing: Opportunities and deep and federated learning: A survey. IEEE Access.
challenges. IEEE Internet Things J. 2021;8(16):12806-12825. 2022;10:22359-22380.
doi: 10.1109/JIOT.2021.3072611 doi: 10.1109/ACCESS.2022.3151670
5. Zhu J, Cao J, Saxena D, Jiang S, Ferradi H. Blockchain- 9. Acar A, Celik ZB, Aksu H, Uluagac AS, McDaniel P.
empowered federated learning: Challenges, solutions, and Achieving Secure and Differentially Private Computations
future directions. ACM Comput Surv. 2023;55(11):1-31. in Multiparty Settings. In: 2017 IEEE Symposium on Privacy-
Aware Computing (PAC). Washington, DC, USA: IEEE;
doi: 10.1145/3570953 2017. p. 49-59.
6. Zheng J, Lee DKC, Qian D. An in-depth guide to cross-chain doi: 10.1109/PAC.2017.12
protocols under a multi-chain world. World Sci Annu Rev
Fintech. 2023;1:2350003. 10. Harris CG. Cross-chain Technologies: Challenges and
Opportunties for Blockchain Interoperability. In: 2023 IEEE
doi: 10.1142/S2811004823500033 International Conference on Omni-layer Intelligent Systems
7. Belchior R, Vasconcelos A, Guerreiro S, Correia M. A survey (COINS). Berlin, Germany: IEEE; 2023. p. 1-6.
on blockchain interoperability: Past, present, and future doi: 10.1109/COINS57856.2023.10189298
trends. ACM Comput Surv. 2021;54(8):1-41.
11. Zarick R, Pellegrino B, Banister C. Layerzero: Trustless
doi: 10.1145/3471140 omnichain interoperability protocol. arXiv [Preprint]. 2021.
8. El Ouadrhiri A, Abdelhadi A. Differential privacy for doi: 10.48550/arXiv.2110.13871
Volume 2 Issue 3 (2025) 43 doi: 10.36922/aih.5753

