Page 17 - AIH-2-4
P. 17

Artificial Intelligence in Health                                              AI in acute stroke imaging



               doi: 10.1055/s-0040-1709152                        tomography: A multicenter comparative analysis with CT
                                                                  perfusion. J NeuroIntervent Surg. 2024;16(12):1288-1293.
            48.  Shinohara Y, Takahashi N, Lee Y, Ohmura T, Kinoshita T.
               Development of a deep learning model to identify      doi: 10.1136/jnis-2023-020954
               hyperdense MCA sign in patients with acute ischemic   58.  Mallon DH, Taylor EJR, Vittay OI, Sheeka A, Doig D,
               stroke. Jpn J Radiol. 2020;38(2):112-117.
                                                                  Lobotesis  K.  Comparison  of  automated  ASPECTS, large
               doi: 10.1007/s11604-019-00894-4                    vessel occlusion detection and CTP analysis provided by
                                                                  Brainomix and RapidAI in patients with suspected ischaemic
            49.  Brugnara G, Baumgartner M, Scholze ED,  et al. Deep-  stroke. J Stroke Cerebrovasc Dis. 2022;31(10):106702.
               learning based detection of vessel occlusions on
               CT-angiography in patients with suspected acute ischemic      doi: 10.1016/j.jstrokecerebrovasdis.2022.106702
               stroke. Nat Commun. 2023;14(1):4938.            59.  Colasurdo M, Leibushor N, Robledo A,  et al. Automated
               doi: 10.1038/s41467-023-40564-8                    detection  and  analysis  of  subdural  hematomas
                                                                  using a machine learning algorithm.  J  Neurosurg.
            50.  Le NM, Iyyangar AS, Kim Y, et al. Machine learning-enabled   2023;138(4):1077-1084.
               automated large vessel occlusion detection improves transfer
               times at primary stroke centers. SVIN. 2024;4(3):e001119.     doi: 10.3171/2022.8.JNS22888
               doi: 10.1161/SVIN.123.001119                    60.  Chandramohan A, Krothapalli V, Augustin A,  et al.
                                                                  Teleradiology and technology innovations in radiology:
            51.  Rodrigues G, Barreira CM, Bouslama M, et al. Automated   status in India and its role in increasing access to
               large artery occlusion detection in stroke: A single-center   primary health care.  Lancet Reg Health Southeast Asia.
               validation study of an artificial intelligence algorithm.   2023;23:100195.
               Cerebrovasc Dis. 2022;51(2):259-264.
                                                                  doi: 10.1016/j.lansea.2023.100195
               doi: 10.1159/000519125
                                                               61.  Božić   V.   Radiology,  Telemedicine  and  Artifical
            52.  Rava RA, Peterson BA, Seymour SE, et al. Validation of an   Intelligence; 2023.
               artificial intelligence-driven large vessel occlusion detection
               algorithm for acute ischemic stroke patients. Neuroradiol J.      doi: 10.13140/RG.2.2.34259.96800
               2021;34(5):408-417.                             62.  Kalyanpur A, Mathur N. The Role of teleradiology in
               doi: 10.1177/1971400921998952                      interpretation of ultrasounds performed in the emergency
                                                                  setting. Digit Diagn. 2024;5:231-242.
            53.  Amukotuwa SA, Straka M, Smith H,  et al. Automated
               detection of intracranial large vessel occlusions on computed      doi: 10.17816/DD624586
               tomography angiography: A single center experience. Stroke.   63.  Kalyanpur A, Meka S, Joshi K, Somashekaran Nair HT,
               2019;50(10):2790-2798.                             Mathur N. Teleradiology in Tripura: Effectiveness of
               doi: 10.1161/STROKEAHA.119.026259                  a Telehealth model for the rural health sector.  IJHTI.
                                                                  2022;1(2):7-12.
            54.  Alwood BT, Meyer DM, Ionita C,  et al. Multicenter
               comparison  using  two  AI  stroke  CT  perfusion  software      doi: 10.60142/ijhti.v1i02.36
               packages for determining thrombectomy eligibility. J Stroke   64.  Kalyanpur A, Mathur N. Impact of teleradiology on
               Cerebrovasc Dis. 2024;33(7):107750.                oncological interpretation of PET-CT scans. Indian J Nucl
               doi: 10.1016/j.jstrokecerebrovasdis.2024.107750    Med. 2024;39(6):436-440.
            55.  Albers GW, Lansberg MG, Kemp S,  et  al. A  multicenter      doi: 10.4103/ijnm.ijnm_31_24
               randomized controlled trial of endovascular therapy   65.  Kapoor N, Lacson R, Khorasani R. Workflow applications
               following imaging evaluation for ischemic stroke   of artificial intelligence in radiology and an overview of
               (DEFUSE 3). Int J Stroke. 2017;12(8):896-905.      available tools. J Am Coll Radiol. 2020;17(11):1363-1370.
               doi: 10.1177/1747493017701147                      doi: 10.1016/j.jacr.2020.08.016
            56.  Hu M, Chen N, Zhou X, Wu Y, Ma C. Deep learning-based   66.  van de Leemput SC, Prokop M, van Ginneken B,
               computed tomography perfusion imaging to evaluate the   Manniesing R. Stacked bidirectional convolutional LSTMs
               effectiveness and safety of thrombolytic therapy for cerebral   for deriving 3D non-contrast CT from spatiotemporal 4D
               infarct with unknown time of onset.  Contrast Media Mol   CT. IEEE Trans Med Imaging. 2020;39(4):985-996.
               Imaging. 2022;2022:9684584.
                                                                  doi: 10.1109/TMI.2019.2939044
               doi: 10.1155/2022/9684584
                                                               67.  Pu A, Wang H, Ying J. Optimized backprojection filtration
            57.  Shahrouki P, Kihira S, Tavakkol E,  et al. Automated   algorithm for postoperative reduction and analysis of
               assessment of ischemic core on non-contrast computed   respiratory infection-related factors  of pelvic  fractures  by


            Volume 2 Issue 4 (2025)                         11                          doi: 10.36922/AIH025140025
   12   13   14   15   16   17   18   19   20   21   22