Page 16 - AIH-2-4
P. 16

Artificial Intelligence in Health                                              AI in acute stroke imaging



               Appl Sci. 2023;13(7):4321.                         injury:  A  comprehensive  review.  Indian J Neurotrauma.
                                                                  2024;21(1):6-12.
               doi: 10.3390/app13074321
            28.  Rava RA, Seymour SE, LaQue ME, et al. Assessment of an      doi: 10.1055/s-0043-1777676
               artificial intelligence algorithm for detection of intracranial   38.  Liao CC, Chen YF, Xiao F. Brain midline shift measurement
               hemorrhage. World Neurosurg. 2021;150:e209-e217.   and its automation: A review of techniques and algorithms.
                                                                  Int J Biomed Imaging. 2018;2018:4303161.
               doi: 10.1016/j.wneu.2021.02.134
            29.  Chilamkurthy S, Ghosh R, Tanamala S, et al. Development      doi: 10.1155/2018/4303161
               and Validation of Deep Learning Algorithms for Detection of   39.  Nguyen NP, Yoo Y, Chekkoury A, et al. Brain Midline Shift
               Critical Findings in Head CT Scans. [arxiv preprint]; 2018.  Detection and Quantification by a Cascaded Deep Network
               doi: 10.48550/ARXIV.1803.05854                     Pipeline  on  Non-contrast  Computed  Tomography  Scans.
                                                                  In: 2021 IEEE/CVF International Conference on Computer
            30.  Agarwal S, Wood D, Grzeda M,  et al. Systematic review   Vision Workshops (ICCVW). United States: IEEE; 2021.
               of artificial intelligence for abnormality detection in high-  p. 487-495.
               volume neuroimaging and subgroup meta-analysis for
               intracranial hemorrhage detection.  Clin Neuroradiol.      doi: 10.1109/ICCVW54120.2021.00059
               2023;33(4):943-956.                             40.  Chen  W,  Belle  A,  Cockrell  C,  Ward  KR,  Najarian  K.
               doi: 10.1007/s00062-023-01291-1                    Automated midline shift and intracranial pressure
                                                                  estimation based on brain CT images. JoVE. 2013;74:3871.
            31.  Chiramal JA, Johnson J, Webster J,  et al. Artificial
               Intelligence-based  automated  CT  brain  interpretation  to      doi: 10.3791/3871
               accelerate treatment for acute stroke in rural India: An   41.  Yan JL, Chen YL, Chen MY, et al. A Robust, fully automatic
               interrupted time series study.  PLOS Glob Public Health.   detection method and calculation technique of midline
               2024;4(7):e0003351.                                shift in intracranial hemorrhage and its clinical application.
               doi: 10.1371/journal.pgph.0003351                  Diagnostics. 2022;12(3):693.
            32.  Gilotra K, Swarna S, Mani R, Basem J, Dashti R. Role      doi: 10.3390/diagnostics12030693
               of artificial intelligence and machine learning in the   42.  Pexman JH, Barber PA, Hill MD, et al. Use of the alberta
               diagnosis of cerebrovascular disease. Front Hum Neurosci.   stroke program early CT score (ASPECTS) for assessing CT
               2023;17:1254417.                                   scans in patients with acute stroke. AJNR Am J Neuroradiol.
               doi: 10.3389/fnhum.2023.1254417                    2001;22(8):1534-1542.
            33.  Hillis JM, Bizzo BC, Newbury-Chaet I, et al. Evaluation of an   43.  Chiang PL, Lin SY, Chen MH, et al. Deep learning-based
               artificial intelligence model for identification of intracranial   automatic detection of ASPECTS in acute ischemic stroke:
               hemorrhage subtypes on computed tomography of the head.   Improving  stroke assessment on CT scans.  J  Clin Med.
               SVIN. 2024;4(4):e001223.                           2022;11(17):5159.
               doi: 10.1161/SVIN.123.001223                       doi: 10.3390/jcm11175159
            34.  Zhao Z, Zhang Y, Su J, et al. A comprehensive review for   44.  Upadhyay U, Ranjan M, Golla S,  et al.  Deep-ASPECTS:
               artificial intelligence on neuroimaging in rehabilitation of   A  Segmentation-Assisted Model for Stroke Severity
               ischemic stroke. Front Neurol. 2024;15:1367854.    Measurement. [arxiv preprint]; 2022.
               doi: 10.3389/fneur.2024.1367854                    doi: 10.48550/ARXIV.2203.03622

            35.  Savage CH, Tanwar M, Elkassem AA,  et al. Prospective   45.  Maegerlein C, Fischer J, Mönch S,  et  al. Automated
               evaluation of artificial intelligence triage of intracranial   calculation of the Alberta stroke program early CT score:
               hemorrhage on noncontrast head CT examinations. Am J   Feasibility and reliability. Radiology. 2019;291(1):141-148.
               Roentgenol. 2024;223(5):e2431639.                  doi: 10.1148/radiol.2019181228
               doi: 10.2214/AJR.24.31639                       46.  Nagel S, Sinha D, Day D, et al. e-ASPECTS software is non-
            36.  Vacek A, Mair G, White P,  et al. Evaluating artificial   inferior to neuroradiologists in applying the ASPECT score
               intelligence  software  for  delineating  hemorrhage  extent   to computed tomography scans of acute ischemic stroke
               on CT brain imaging in stroke.  J  Stroke Cerebrovasc Dis.   patients. Int J Stroke. 2017;12(6):615-622.
               2024;33(1):107512.
                                                                  doi: 10.1177/1747493016681020
               doi: 10.1016/j.jstrokecerebrovasdis.2023.107512  47.  Dhand S, O’Connor P, Hughes C, Lin SP. Acute ischemic
            37.  Agrawal D, Joshi S, Poonamallee L. Automated midline   stroke: Acute management and selection for endovascular
               shift detection and quantification in traumatic brain   therapy. Semin Intervent Radiol. 2020;37(2):109-118.


            Volume 2 Issue 4 (2025)                         10                          doi: 10.36922/AIH025140025
   11   12   13   14   15   16   17   18   19   20   21