Page 52 - AJWEP-22-5
P. 52
Rajak, et al.
of environmental sustainability. Sustain Sci. 268. Pundienė I, Pranckevičienė J, Zhu C, Kligys M. The role
2021;16:949-965. of temperature and activator solution molarity on the
doi: 10.1007/s11625-021-00910-5 viscosity and hard structure formation of geopolymer
257. Meng L, Kordestany A, Maini B, Dong M. Experimental pastes. Constr Build Mater. 2020;272:121661.
study of diffusion of vaporized solvent in bitumen at doi: 10.1016/j.conbuildmat.2020.121661
elevated temperatures. Fuel. 2020;280:118595. 269. Wen L, Wang Y, Lu D, Hu S, Han H. Preparation of
doi: 10.1016/j.fuel.2020.118595 KF/CaO nanocatalyst and its application in biodiesel
258. Geetha VT, Selvakumar C, Shravan Kumar S, production from Chinese tallow seed oil. Fuel.
Gopinath S, Ragupathi C, Rajendiran A. Effect of 2010;89:2267-2271.
morphological and particle size, structure on the physical doi: 10.1016/j.fuel.2010.01.028
properties of Sr doped cobalt chromite for catalysis 270. Kumar B, Ramesh K, Sivakumar P, Vishnupriya M. KF/
application. Chem Inorg Mater. 2024;3:100058. CaO nanocatalyst for the production of biodiesel from
doi: 10.1016/j.cinorg.2024.100058 animal fat through single-step process. Int J Appl Eng
259. Reghunath S, Pinheiro D, Sunaja Devi KR. A review Res. 2021;10(61):422.
of hierarchical nanostructures of TiO : Advances and 271. Martín-Martín JA, Sánchez-Robles J, González-Marcos MP,
2
applications. Appl Surf Sci Adv. 2021;3:100063. Aranzabal A, González-Velasco JR. Effect of preparation
doi: 10.1016/j.apsadv.2021.100063 procedure and composition of catalysts based on Mn and
260. Veriansyah B, Kim JD, Kim BK, Shin YH, Woo Y, Ce oxides in the simultaneous removal of NO and o-DCB.
X
Kim J. Continuous synthesis of surface-modified Mol Catal. 2020;495:111152.
zinc oxide nanoparticles in supercritical methanol. doi: 10.1016/j.mcat.2020.111152
J Supercrit Fluid. 2010;52:76-83. 272. Borlaf M, Moreno R. Colloidal sol-gel: A powerful
doi: 10.1016/j.supflu.2009.11.010 low-temperature aqueous synthesis route of nanosized
261. Ingle AP, Chandel AK, Philippini R, Martiniano SE, powders and suspensions. Open Ceram. 2021;8:100200.
Da Silva SS. Advances in nanocatalysts mediated doi: 10.1016/j.oceram.2021.100200
biodiesel production: A critical appraisal. Symmetry. 273. Schubert U. Chemistry and Fundamentals of the Sol-Gel
2020;12:256. Process. Weinheim: VCH-Wiley Verlag GmbH; 2015.
doi: 10.3390/sym12020256 doi: 10.1002/9783527670819.ch01
262. Ruiz-Jorge F, Portela JR, Sánchez-Oneto J, 274. Coradin T. Sol-Gel Process, Structure, and Properties.
Martínez De La Ossa EJ. Synthesis of micro- and Cham: Springer; 2022.
nanoparticles in sub- and supercritical water: From the doi: 10.1007/978-3-030-23217-7_141
laboratory to larger scales. Appl Sci. 2020;10:5508. 275. Bokov D, Jalil AT, Chupradit S, et al. Nanomaterial by
doi: 10.3390/app10165508 sol-gel method: Synthesis and application. Adv Mater
263. Munnik P, De Jongh PE, De Jong KP. Recent Sci Eng. 2021;2021:5102014.
developments in the synthesis of supported catalysts. doi: 10.1155/2021/5102014
Chem Rev. 2015;115(14):6687-6718. 276. Sharm M, Pathak M, Kapoor PN. The sol-gel method:
doi: 10.1021/cr500486u Pathway to ultrapure and homogeneous mixed metal
264. Liu X, Khinast JG, Glasser BJ. A parametric oxide nanoparticles. Asian J Chem. 2018;30:1405-1412.
investigation of impregnation and drying of supported doi: 10.14233/ajchem.2018.20845
catalysts. Chem Eng Sci. 2008;63:4517-4530. 277. Ciesielczyk F, Przybysz M, Zdarta J, Piasecki A,
doi: 10.1016/j.ces.2008.06.013 Paukszta D, Jesionowski T. The sol-gel approach as
265. Zhang Y, Chen Z, Zhang Y, Su Y, Riffat S. Parameter a method of synthesis of xMgO·ySiO powder with
2
control in synthesis of Vermiculite-CaCl composite defined physicochemical properties including crystalline
2
materials for thermochemical adsorption heat storage. structure. J Sol Gel Sci Technol. 2014;71:501-513.
Energy. 2024;291:130478. doi: 10.1007/s10971-014-3398-1
doi: 10.1016/j.energy.2024.130478 278. Danks AE, Hall SR, Schnepp Z. The evolution of
266. Dönmez O, Dükkancı M, Gündüz G. Effects of “sol-gel” chemistry as a technique for materials
catalyst preparation method and reaction parameters synthesis. Mater Horiz. 2016;3:91-112.
on the ultrasound assisted photocatalytic oxidation doi: 10.1039/C5MH00260E
of reactive yellow 84 dye. J Environ Health Sci Eng. 279. Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E.
2020;18(2):835-851. Review on sol-gel synthesis of perovskite and oxide
doi: 10.1007/s40201-020-00507-7 nanomaterials. Gels. 2021;7(4):275.
267. Adisa H, Emina T, Amra B, Amra O, Indira Š. Impact doi: 10.3390/gels7040275
of solvent and temperature on solubility and viscosity 280. Rahman IA, Padavettan V. Synthesis of silica
of expanded polystyrene. In: International Students nanoparticles by sol-gel: Size-dependent properties,
GREEN Conference; 2021. p. 32-38. surface modification, and applications in
Volume 22 Issue 5 (2025) 46 doi: 10.36922/AJWEP025130095

