Page 52 - AJWEP-22-5
P. 52

Rajak, et al.

                    of   environmental  sustainability.  Sustain  Sci.   268.  Pundienė I, Pranckevičienė J, Zhu C, Kligys M. The role
                    2021;16:949-965.                                     of temperature and activator solution molarity on the
                    doi: 10.1007/s11625-021-00910-5                      viscosity and hard structure formation of geopolymer
                257.  Meng L, Kordestany A, Maini B, Dong M. Experimental   pastes. Constr Build Mater. 2020;272:121661.
                    study of diffusion of vaporized solvent in bitumen at      doi: 10.1016/j.conbuildmat.2020.121661
                    elevated temperatures. Fuel. 2020;280:118595.   269.  Wen L, Wang Y, Lu D, Hu S, Han H. Preparation of
                    doi: 10.1016/j.fuel.2020.118595                      KF/CaO nanocatalyst  and  its  application  in  biodiesel
                258.  Geetha  VT, Selvakumar C, Shravan Kumar S,         production  from Chinese tallow  seed oil.  Fuel.
                    Gopinath  S,  Ragupathi  C,  Rajendiran  A.  Effect  of   2010;89:2267-2271.
                    morphological and particle size, structure on the physical      doi: 10.1016/j.fuel.2010.01.028
                    properties  of Sr doped cobalt  chromite  for catalysis   270.  Kumar B, Ramesh K, Sivakumar P, Vishnupriya M. KF/
                    application. Chem Inorg Mater. 2024;3:100058.        CaO nanocatalyst for the production of biodiesel from
                    doi: 10.1016/j.cinorg.2024.100058                    animal fat through single-step process. Int J Appl Eng
                259.  Reghunath S, Pinheiro D, Sunaja Devi KR. A review   Res. 2021;10(61):422.
                    of hierarchical  nanostructures of TiO : Advances  and   271.  Martín-Martín JA, Sánchez-Robles J, González-Marcos MP,
                                                   2
                    applications. Appl Surf Sci Adv. 2021;3:100063.      Aranzabal A, González-Velasco JR. Effect of preparation
                    doi: 10.1016/j.apsadv.2021.100063                    procedure and composition of catalysts based on Mn and
                260.  Veriansyah  B,  Kim  JD,  Kim  BK,  Shin  YH,  Woo  Y,   Ce oxides in the simultaneous removal of NO  and o-DCB.
                                                                                                           X
                    Kim  J.  Continuous  synthesis  of  surface-modified   Mol Catal. 2020;495:111152.
                    zinc  oxide  nanoparticles  in  supercritical  methanol.      doi: 10.1016/j.mcat.2020.111152
                    J Supercrit Fluid. 2010;52:76-83.               272.  Borlaf  M,  Moreno  R.  Colloidal  sol-gel:  A  powerful
                    doi: 10.1016/j.supflu.2009.11.010                    low-temperature aqueous synthesis route of nanosized
                261.  Ingle AP, Chandel AK,  Philippini R, Martiniano SE,   powders and suspensions. Open Ceram. 2021;8:100200.
                    Da Silva SS.  Advances in nanocatalysts  mediated      doi: 10.1016/j.oceram.2021.100200
                    biodiesel  production:  A  critical  appraisal.  Symmetry.   273.  Schubert U. Chemistry and Fundamentals of the Sol-Gel
                    2020;12:256.                                         Process. Weinheim: VCH-Wiley Verlag GmbH; 2015.
                    doi: 10.3390/sym12020256                             doi: 10.1002/9783527670819.ch01
                262.  Ruiz-Jorge F, Portela JR, Sánchez-Oneto J,    274.  Coradin T. Sol-Gel Process, Structure, and Properties.
                    Martínez  De  La Ossa EJ. Synthesis of micro-  and   Cham: Springer; 2022.
                    nanoparticles in sub- and supercritical water: From the      doi: 10.1007/978-3-030-23217-7_141
                    laboratory to larger scales. Appl Sci. 2020;10:5508.  275.  Bokov D, Jalil AT, Chupradit S, et al. Nanomaterial by
                    doi: 10.3390/app10165508                             sol-gel method: Synthesis and application. Adv Mater
                263.  Munnik  P,  De Jongh PE,  De Jong KP. Recent       Sci Eng. 2021;2021:5102014.
                    developments in the synthesis of supported catalysts.      doi: 10.1155/2021/5102014
                    Chem Rev. 2015;115(14):6687-6718.               276.  Sharm M, Pathak M, Kapoor PN. The sol-gel method:
                    doi: 10.1021/cr500486u                               Pathway to ultrapure  and homogeneous mixed  metal
                264.  Liu  X,  Khinast  JG,  Glasser  BJ.  A  parametric   oxide nanoparticles. Asian J Chem. 2018;30:1405-1412.
                    investigation of impregnation and drying of supported      doi: 10.14233/ajchem.2018.20845
                    catalysts. Chem Eng Sci. 2008;63:4517-4530.     277.  Ciesielczyk  F, Przybysz M, Zdarta  J, Piasecki  A,
                    doi: 10.1016/j.ces.2008.06.013                       Paukszta  D, Jesionowski  T.  The  sol-gel  approach  as
                265.  Zhang Y, Chen Z, Zhang Y, Su Y, Riffat S. Parameter   a method of synthesis of xMgO·ySiO  powder with
                                                                                                         2
                    control  in synthesis of  Vermiculite-CaCl  composite   defined physicochemical properties including crystalline
                                                       2
                    materials for thermochemical adsorption heat storage.   structure. J Sol Gel Sci Technol. 2014;71:501-513.
                    Energy. 2024;291:130478.                             doi: 10.1007/s10971-014-3398-1
                    doi: 10.1016/j.energy.2024.130478               278.  Danks  AE, Hall  SR, Schnepp Z.  The  evolution  of
                266.  Dönmez  O,  Dükkancı  M,  Gündüz  G.  Effects  of   “sol-gel”  chemistry  as a  technique  for materials
                    catalyst  preparation method and reaction  parameters   synthesis. Mater Horiz. 2016;3:91-112.
                    on the ultrasound assisted photocatalytic  oxidation      doi: 10.1039/C5MH00260E
                    of reactive yellow 84 dye. J Environ Health Sci Eng.   279.  Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E.
                    2020;18(2):835-851.                                  Review  on sol-gel  synthesis of perovskite  and oxide
                    doi: 10.1007/s40201-020-00507-7                      nanomaterials. Gels. 2021;7(4):275.
                267.  Adisa H, Emina T, Amra B, Amra O, Indira Š. Impact      doi: 10.3390/gels7040275
                    of solvent and temperature on solubility and viscosity   280.  Rahman IA, Padavettan  V. Synthesis of silica
                    of expanded polystyrene. In: International Students   nanoparticles  by sol-gel: Size-dependent  properties,
                    GREEN Conference; 2021. p. 32-38.                    surface   modification,   and   applications   in



                Volume 22 Issue 5 (2025)                        46                           doi: 10.36922/AJWEP025130095
   47   48   49   50   51   52   53   54   55   56   57