Page 50 - AJWEP-22-5
P. 50

Rajak, et al.

                    doi: 10.1016/j.hazadv.2022.100134                    doi: 10.1016/j.seppur.2020.117528
                213.  Amalina  F, Razak ASA, Krishnan S, Zularisam AW,   224.  Saputra  E,  Utama  PS,  Azis  Y,  et  al. Geopolymer
                    Nasrullah  M.  A  comprehensive  assessment  of the   catalysts derived from palm oil mill ash for biodiesel
                    method  for producing biochar, its characterization,   production from  Calophyllum inophyllum oil.  Appl
                    stability, and potential  applications  in regenerative   Nanosci. 2022;12:1-11.
                    economic  sustainability  -  a review.  Clean  Mater.      doi: 10.1007/s13204-021-02180-0
                    2022;3:100045.                                  225.  Galai  H, Pijolat  M, Nahdi  K,  Trabelsi-Ayadi  M.
                    doi: 10.1016/j.clema.2022.100045                     Mechanism of growth of MgO and CaCO  during a
                                                                                                            3
                214.  Wang  X, Liu  R,  Waje  MM,  et  al. Sulfonated    dolomite  partial decomposition.  Solid State Ionics.
                    ordered mesoporous carbon as a stable and highly     2007;178:1039-1047.
                    active  protonic  acid  catalyst  pingyun.  Chem Mater.      doi: 10.1016/j.ssi.2007.05.013
                    2007;19:2395-2397.                              226.  Santos  RC,  Vieira  RB,  Valentini  A.  Optimization
                    doi: 10.1021/cm070278r                               study in biodiesel production  via  response surface
                215.  Saikia  K, Ngaosuwan K,  Assabumrungrat  S,  et  al.   methodology using dolomite  as a heterogeneous
                    Sulphonated cellulose-based carbon as a green        catalyst. J Catal. 2014;2014:1-11.
                    heterogeneous catalyst for biodiesel production: Process      doi: 10.1155/2014/213607
                    optimization  and kinetic  studies.  Biomass Bioenergy.   227.  Mohammed  MAA,  Shafizah  IN,  Salmiaton  A,
                    2023;173:106799.                                     Azlina WAKG, Taufiq-Yap YH. The evaluation on three
                    doi: 10.1016/j.biombioe.2023.106799                  types of Malaysian dolomites as a primary catalyst in
                216.  Mardhiah HH, Ong HC, Masjuki HH, Lim S, Pang YL.   gasification reaction of EFB and tar cracking efficiency.
                    Investigation of carbon-based solid acid catalyst from   Front Energy Res. 2020;8:38.
                    Jatropha curcas biomass in biodiesel production.      doi: 10.3389/fenrg.2020.00038
                    Energy Conv Manag. 2017;144:10-17.              228.  Pesonen J, Myllymäki  P,  Tuomikoski  S,  et  al. Use
                    doi: 10.1016/j.enconman.2017.04.038                  of calcined  dolomite  as chemical  precipitant  in  the
                217.  Feng W, Tie X, Duan X, et al. Polymer functionalization   simultaneous  removal  of ammonium  and  phosphate
                    of biochar-based heterogeneous catalyst with acid-base   from synthetic wastewater and from agricultural sludge.
                    bifunctional catalytic activity for conversion of the insect   ChemEngineering. 2019;3:40.
                    lipid into biodiesel. Arab J Chem. 2023;16(7):104814.     doi: 10.3390/chemengineering3020040
                    doi: 10.1016/j.arabjc.2023.104814               229.  Yoosuk  B,  Udomsap  P,  Puttasawat  B.  Hydration-
                218.  Cheng F, Li X. Preparation and application of biochar-  dehydration  technique  for property  and  activity
                    based catalysts for biofuel  production. Catalysts.   improvement  of calcined  natural  dolomite  in
                    2018;8:346.                                          heterogeneous  biodiesel  production:  Structural
                    doi: 10.3390/catal8090346                            transformation  aspect.  Appl  Catal  A  Gen.
                219.  Kumar S, Soomro SA, Harijan K, Uqaili MA, Kumar L.   2011;395:87-94.
                    Advancements of biochar-based catalyst for improved      doi: 10.1016/j.apcata.2011.01.026
                    production  of biodiesel:  A  comprehensive  review.   230.  Chen C, Zhong H,  Wang X,  et al. Thermodynamic
                    Energies. 2023;16:644.                               and kinetic  studies of dolomite  formation: A  review.
                    doi: 10.3390/en16020644                              Minerals. 2023;13:1479.
                220.  Widayat  W, Fernanda  AA, Silvie ES. Palm kernel      doi: 10.3390/min13121479
                    shell  biochar  catalyst  for biodiesel  production  from   231.  Melchiorre  M, Cucciolito  ME, Di Serio M,  et  al.
                    waste cooking oil.  IOP Conf Ser  Mater Sci Eng.     Homogeneous  catalysis  and  heterogeneous  recycling:
                    2021;1053:012064.                                    A simple Zn(II) catalyst for green fatty acid esterification.
                    doi: 10.1088/1757-899X/1053/1/012064                 ACS Sustain Chem Eng. 2021;9(17):6001-6011.
                221.  Testa ML, Parola  VL. Sulfonic acid-functionalized      doi: 10.1021/acssuschemeng.1c01140
                    inorganic  materials  as  efficient  catalysts  in  various   232.  López DE, Goodwin JG Jr., Bruce DA. Transesterification
                    applications: A minireview. Catalysts. 2021;11:1143.  of  triacetin  with  methanol  on  nafion®  acid  resins.
                    doi: 10.3390/catal11101143                           J Catal. 2007;245:381-391.
                222.  Li M, Chen D, Zhu X. Preparation of solid acid catalyst      doi: 10.1016/j.jcat.2006.10.027
                    from rice  husk char  and its catalytic  performance  in   233.  Munoz RAA, Fernandes DM, Santos DQ, Barbosa TG,
                    esterification. Chin J Catal. 2013;34:1674-1682.     Sousa RMF. Biodiesel: Production, Characterization,
                    doi: 10.1016/S1872-2067(12)60634-2                   Metallic  Corrosion and  Analytical  Methods  for
                223.  Zhou  J, Zhao  J,  Yang  F,  et  al. Leaching  kinetics  of   Contaminants. London: IntechOpen; 2012. p. 6.
                    potassium and aluminum from phosphorus-potassium      doi: 10.5772/53655
                    associated ore in HCl-CaF2 system. Sep Purif Technol.   234.  Hutchings GJ, Védrine JC. Springer Series in Chemical
                    2020;253:117528.                                     Physics. Vol. 75. 2004. p. 215-258.



                Volume 22 Issue 5 (2025)                        44                           doi: 10.36922/AJWEP025130095
   45   46   47   48   49   50   51   52   53   54   55