Page 46 - AJWEP-22-5
P. 46

Rajak, et al.

                    2021;25(4):596-604.                             135.  Peeters  PE,  Makshina  EV,  Parvulescu  VI,  Sels  BF.
                124.  Seffati  K,  Honarvar  B,  Esmaeili  H,  Esfandiari  N.   Advances in porous and nanoscale catalysts for viable
                    Enhanced biodiesel production from chicken fat using   biomass conversion. Chem Soc Rev. 2019;48:2366-2421.
                    CaO/CuFe2O4 nanocatalyst  and  its  combination      doi: 10.1039/C8CS00452H
                    with diesel  to improve  fuel properties.  Fuel.   136.  Yung C, Gon  S. High activity  of acid-treated
                    2019;235:1238-1244.                                  quail  eggshell  catalysts  in  the  transesterification
                    doi: 10.1016/j.fuel.2018.08.118                      of palm oil with methanol.  Bioresour Technol.
                125.  Mohebbi S, Rostamizadeh M, Kahforoushan D.         2010;101(11):8515-8519.
                    Technical and economic analysis of conventional and      doi: 10.1016/j.biortech.2010.06.082
                    supercritical transesterification for biofuel production.   137.  Jairam  S, Kolar P, Sharma-Shivappa  R, Osborne  JA,
                    Fuel. 2020;266:117063.                               Davis JA. KI-impregnated  oyster shell as a solid
                    doi: 10.1016/j.fuel.2020.117063                      catalyst  for  soybean  oil  transesterification.  Bioresour
                126.  Hoffmann  F,  Riesen  R,  Foreman  J.  Characterization   Technol. 2012;104:329-335.
                    of thermal stability and reaction products by means of      doi: 10.1016/j.biortech.2011.10.039
                    TGA-FTIR coupling. Vol. 32. Chhattisgarh: American   138.  Amal R, Usman M.  A  review of breakthroughs in
                    Laboratory; 2000. p. 13-17.                          biodiesel production with transition and non-transition
                127.  Sarah  D,  Endah  P,  Fredina  D,  Budi  KS,  Siti  A,   metal-doped CaO nano-catalysts. Biomass Bioenergy.
                    Muhammad I. Analysis of optimum temperature  and     2024;184:107158.
                    calcination time in the production of CaO using seashells      doi: 10.1016/j.biombioe.2024.107158
                    waste as CaCO3 source. J Ecol Eng. 2021;5:221-228.  139.  Joshi G, Rawat DS, Lamba BY, et al. Transesterification
                    doi: 10.12911/22998993/135316                        of Jatropha and Karanja oils by using waste egg shell
                128.  Yuling W,  Xiaoli W, Wen  S,  et  al.  A  catalyst  with   derived  calcium  based mixed  metal  oxides.  Energy
                    the better catalytic activity for NO reduction showed   Conv Manage. 2015;96(5):258-267.
                    bigger reduction capacity and limiting current. Sci Total      doi: 10.1016/j.enconman.2015.02.061
                    Environ. 2019;701:135036.                       140.  Vasić  K,  Hojnik  Podrepšek  G,  Knez  Z,  Leitgeb  M.
                    doi: 10.1016/j.scitotenv.2019.135036                 Biodiesel  production  using  solid  acid  catalysts  based
                129.  Peng-Lim  B,  Pragas  MG,  Shafida  H.  Evaluation  of   on metal oxides. Catalysts. 2020;10:237.
                    safety  of  excessive  intake  and  efficacy  of  long-term      doi: 10.3390/catal10020237
                    intake  of beverages containing  apple  polyphenols.   141.  Nasar M, Hwa TS, Lokman IM, Yun H. Synthesis and
                    J Oleo Sci. 2009;59:321-338.                         application of waste egg shell derived CaO supported
                    doi: 10.5650/jos.58.499                              W-Mo mixed oxide catalysts for FAME production
                130.  Hu S, Wang Y, Han H. Utilization of waste freshwater   from waste cooking oil: Effect of stoichiometry. Energy
                    mussel shell as an economic  catalyst  for biodiesel   Conv Manage. 2017;151(8):216-226.
                    production. Biomass Bioenergy. 2011;35(8):3627-3635.     doi: 10.1016/j.enconman.2017.08.069
                    doi: 10.1016/j.biombioe.2011.05.009             142.  Shankar V, Jambulingam R. Waste crab shell derived
                131.  Florin NH, Harris  AT. Reactivity  of CaO derived   CaO impregnated  Na-ZSM-5 as a solid base catalyst
                    from nano-sized CaCO  particles  through multiple    for  the  transesterification  of  neem  oil  into  biodiesel.
                                         3
                    CO  capture-and-release  cycles.  Chem Eng Sci.      Sustain Environ Res. 2017;27(7):273-278.
                       2
                    2009;64:187-191.                                     doi: 10.1016/j.serj.2017.06.006
                    doi: 10.1016/j.ces.2008.10.021                  143.  Rúbia R, Pedro F, Sara M, Isabel F, Joaquim V. Highly
                132.  Kalinkin AM, Kalinkina EV, Zalkind OA, Makarova TI.   active Cao catalysts from waste shells of egg, oyster
                    Chemical  interaction of calcium  oxide and calcium   and clam for biodiesel production. Appl Catal A Gen.
                    hydroxide  with  CO  during  mechanical  activation.   2018;567(9):56-64.
                                     2
                    Inorg Mater. 2005;41(10):1073-1079.                  doi: 10.1016/j.apcata.2018.09.003
                    doi: 10.1007/s10789-005-0263-1                  144.  Hoora M, HwaiChyuan O, Masjuki HH,  et  al. Rice
                133.  Zik NAFA, Sarina S, Parveen J. Biodiesel production   bran oil based biodiesel production using calcium
                    from waste cooking oil using calcium oxide/nanocrystal   oxide catalyst derived from Chicoreus brunneus shell.
                    cellulose/polyvinyl  alcohol  catalyst  in a packed  bed   Energy. 2017;144(11):10-19.
                    reactor. Renew Energy. 2020;3:155.                   doi: 10.1016/j.energy.2017.11.073
                    doi: 10.1016/j.renene.2020.03.144               145.  Niju  S,  Meera  KM,  Begum  S,  Anantharaman  N.
                134.  Osman IA, Ayati A, Krivoshapkin P, et al. Coordination-  Modification of egg shell and its application in biodiesel
                    driven innovations in low-energy catalytic  processes:   production. J Saudi Chem Soc. 2014;18(2):702-706.
                    Advancing  sustainability  in  chemical  production.      doi: 10.1016/j.jscs.2014.02.010
                    Coord Chem Rev. 2024;514:215900.                146.  Sun Y, Sage V, Sun Z. An enhanced process of using
                    doi: 10.1016/j.ccr.2024.215900                       direct  fluidized  bed  calcination  of  shrimp  shell  for



                Volume 22 Issue 5 (2025)                        40                           doi: 10.36922/AJWEP025130095
   41   42   43   44   45   46   47   48   49   50   51