Page 46 - AJWEP-22-5
P. 46
Rajak, et al.
2021;25(4):596-604. 135. Peeters PE, Makshina EV, Parvulescu VI, Sels BF.
124. Seffati K, Honarvar B, Esmaeili H, Esfandiari N. Advances in porous and nanoscale catalysts for viable
Enhanced biodiesel production from chicken fat using biomass conversion. Chem Soc Rev. 2019;48:2366-2421.
CaO/CuFe2O4 nanocatalyst and its combination doi: 10.1039/C8CS00452H
with diesel to improve fuel properties. Fuel. 136. Yung C, Gon S. High activity of acid-treated
2019;235:1238-1244. quail eggshell catalysts in the transesterification
doi: 10.1016/j.fuel.2018.08.118 of palm oil with methanol. Bioresour Technol.
125. Mohebbi S, Rostamizadeh M, Kahforoushan D. 2010;101(11):8515-8519.
Technical and economic analysis of conventional and doi: 10.1016/j.biortech.2010.06.082
supercritical transesterification for biofuel production. 137. Jairam S, Kolar P, Sharma-Shivappa R, Osborne JA,
Fuel. 2020;266:117063. Davis JA. KI-impregnated oyster shell as a solid
doi: 10.1016/j.fuel.2020.117063 catalyst for soybean oil transesterification. Bioresour
126. Hoffmann F, Riesen R, Foreman J. Characterization Technol. 2012;104:329-335.
of thermal stability and reaction products by means of doi: 10.1016/j.biortech.2011.10.039
TGA-FTIR coupling. Vol. 32. Chhattisgarh: American 138. Amal R, Usman M. A review of breakthroughs in
Laboratory; 2000. p. 13-17. biodiesel production with transition and non-transition
127. Sarah D, Endah P, Fredina D, Budi KS, Siti A, metal-doped CaO nano-catalysts. Biomass Bioenergy.
Muhammad I. Analysis of optimum temperature and 2024;184:107158.
calcination time in the production of CaO using seashells doi: 10.1016/j.biombioe.2024.107158
waste as CaCO3 source. J Ecol Eng. 2021;5:221-228. 139. Joshi G, Rawat DS, Lamba BY, et al. Transesterification
doi: 10.12911/22998993/135316 of Jatropha and Karanja oils by using waste egg shell
128. Yuling W, Xiaoli W, Wen S, et al. A catalyst with derived calcium based mixed metal oxides. Energy
the better catalytic activity for NO reduction showed Conv Manage. 2015;96(5):258-267.
bigger reduction capacity and limiting current. Sci Total doi: 10.1016/j.enconman.2015.02.061
Environ. 2019;701:135036. 140. Vasić K, Hojnik Podrepšek G, Knez Z, Leitgeb M.
doi: 10.1016/j.scitotenv.2019.135036 Biodiesel production using solid acid catalysts based
129. Peng-Lim B, Pragas MG, Shafida H. Evaluation of on metal oxides. Catalysts. 2020;10:237.
safety of excessive intake and efficacy of long-term doi: 10.3390/catal10020237
intake of beverages containing apple polyphenols. 141. Nasar M, Hwa TS, Lokman IM, Yun H. Synthesis and
J Oleo Sci. 2009;59:321-338. application of waste egg shell derived CaO supported
doi: 10.5650/jos.58.499 W-Mo mixed oxide catalysts for FAME production
130. Hu S, Wang Y, Han H. Utilization of waste freshwater from waste cooking oil: Effect of stoichiometry. Energy
mussel shell as an economic catalyst for biodiesel Conv Manage. 2017;151(8):216-226.
production. Biomass Bioenergy. 2011;35(8):3627-3635. doi: 10.1016/j.enconman.2017.08.069
doi: 10.1016/j.biombioe.2011.05.009 142. Shankar V, Jambulingam R. Waste crab shell derived
131. Florin NH, Harris AT. Reactivity of CaO derived CaO impregnated Na-ZSM-5 as a solid base catalyst
from nano-sized CaCO particles through multiple for the transesterification of neem oil into biodiesel.
3
CO capture-and-release cycles. Chem Eng Sci. Sustain Environ Res. 2017;27(7):273-278.
2
2009;64:187-191. doi: 10.1016/j.serj.2017.06.006
doi: 10.1016/j.ces.2008.10.021 143. Rúbia R, Pedro F, Sara M, Isabel F, Joaquim V. Highly
132. Kalinkin AM, Kalinkina EV, Zalkind OA, Makarova TI. active Cao catalysts from waste shells of egg, oyster
Chemical interaction of calcium oxide and calcium and clam for biodiesel production. Appl Catal A Gen.
hydroxide with CO during mechanical activation. 2018;567(9):56-64.
2
Inorg Mater. 2005;41(10):1073-1079. doi: 10.1016/j.apcata.2018.09.003
doi: 10.1007/s10789-005-0263-1 144. Hoora M, HwaiChyuan O, Masjuki HH, et al. Rice
133. Zik NAFA, Sarina S, Parveen J. Biodiesel production bran oil based biodiesel production using calcium
from waste cooking oil using calcium oxide/nanocrystal oxide catalyst derived from Chicoreus brunneus shell.
cellulose/polyvinyl alcohol catalyst in a packed bed Energy. 2017;144(11):10-19.
reactor. Renew Energy. 2020;3:155. doi: 10.1016/j.energy.2017.11.073
doi: 10.1016/j.renene.2020.03.144 145. Niju S, Meera KM, Begum S, Anantharaman N.
134. Osman IA, Ayati A, Krivoshapkin P, et al. Coordination- Modification of egg shell and its application in biodiesel
driven innovations in low-energy catalytic processes: production. J Saudi Chem Soc. 2014;18(2):702-706.
Advancing sustainability in chemical production. doi: 10.1016/j.jscs.2014.02.010
Coord Chem Rev. 2024;514:215900. 146. Sun Y, Sage V, Sun Z. An enhanced process of using
doi: 10.1016/j.ccr.2024.215900 direct fluidized bed calcination of shrimp shell for
Volume 22 Issue 5 (2025) 40 doi: 10.36922/AJWEP025130095

