Page 48 - AJWEP-22-5
P. 48

Rajak, et al.

                    2015;76:362-368.                                     for biodiesel production from Jatropha curcas oil. Int J
                    doi: 10.1016/j.renene.2014.11.042                    Green Energy. 2017;14:1163-1171.
                169.  Marzbali  MH, Hakeem  IG, Ngo  T,  et  al. A  critical      doi: 10.1080/15435075.2016.1253573
                    review  on  emerging  industrial  applications  of  chars   180.  Manojkumar N, Muthukumaran C, Sharmila  G.
                    from thermal treatment of biosolids. J Environ Manage.   A comprehensive review on the application of response
                    2024;369:122341.                                     surface methodology for optimization  of biodiesel
                    doi: 10.1016/j.jenvman.2024.122341                   production  using  different  oil  sources.  J  King Saud
                170.  Nisar J,  Razaq R, Farooq M,  et al. Enhanced      Univ Eng Sci. 2022;34(3):198-208.
                    biodiesel production from Jatropha oil using calcined      doi: 10.1016/j.jksues.2020.09.012
                    waste animal  bones as catalyst.  Renew Energy.   181.  Corro  G,  Sánchez  N,  Pal  U,  Bañuelos  F.  Biodiesel
                    2016;101:111-119.                                    production  from waste frying oil using waste animal
                    doi: 10.1016/j.renene.2016.08.048                    bone and solar heat. Waste Manag. 2015;47:105-113.
                171.  Chen  G,  Shan  R,  Shi  J,  Liu  C,  Yan  B.  Biodiesel      doi: 10.1016/j.wasman.2015.02.001
                    production from palm oil using active  and stable   182.  Muliadi R, Saiful J, Febriani F,  et al. Calcined  aceh
                    K  doped hydroxyapatite  catalysts.  Energy Convers   bovine  bone  (Bos  indicus)  intercalated  lithium  as  an
                    Manage. 2015;98:463-469.                             inorganic base catalyst for transesterification of castor
                    doi: 10.1016/j.enconman.2015.04.012                  oil. Aceh Int J Sci Technol. 2020;9:21-28.
                172.  Olajide M, Yemisi A, Simeon O, Salihu A. Catalytic      doi: 10.13170/aijst.9.1.16622
                    performance for transesterification reaction using waste   183.  Fadarina F, Toni F, Junaidi N, et al. Conference: 5  First
                                                                                                                th
                    cooking oils over nano-calcium oxide (n-CaO) catalyst   t1 t2 2021 International Conference; 2022.
                    from  different  waste  bones.  Iraqi J Nanotechnol.      doi: 10.2991/ahe.k.220205.069
                    2022;3:20-34.                                   184.  Sulaiman  S,  Amin MH. Fish bone-catalyzed
                    doi: 10.47758/ijn.vi3.54                             methanolysis  of waste cooking oil.  Bull  Chem React
                173.  Masango SB, Ngema PT, Olagunju OA, Ramsuroop S.    Eng Catal. 2016;11:245-249.
                    The  effect  of  reaction  temperature,  catalyst      doi: 10.9767/bcrec.11.2.556.245-249
                    concentration  and alcohol  ratio  in the  production  of   185.  Odzijewicz JI, Wołejko E, Wydro U, Wasil M, Nska-
                    biodiesel from raw and purified castor oil. Adv Chem   Trypuc J. Utilization of ashes from biomass combustion.
                    Eng Sci. 2024;14:137-154.                            Energies. 2023;15:9653.
                    doi: 10.4236/aces.2024.143009                        doi: 10.3390/en15249653
                174.  Singh V, Sharma YC. Low cost guinea fowl bone derived   186.  Wang W, Lemaire R, Bensakhria A, Luart D. Review on
                    recyclable  heterogeneous  catalyst  for  microwave   the catalytic effects of alkali and alkaline earth metals
                    assisted  transesterification  of  Annona  squamosa L.   (AAEMs)  including sodium, potassium, calcium  and
                    Seed oil. Energy Convers Manage. 2017;138:627-637.   magnesium on the pyrolysis of lignocellulosic biomass
                    doi: 10.1016/j.enconman.2017.02.037                  and on the co-pyrolysis of coal with biomass. J Anal
                175.  Khan HM, Iqbal T, Haider Ali C, Javaid A, Cheema II.   Appl Pyrolysis. 2022;163:105479.
                    Sustainable biodiesel production from waste cooking oil      doi: 10.1016/j.jaap.2022.105479
                    utilizing waste ostrich (Struthio camelus) bones derived   187.  Sharma M, Khan AA, Puri SK, Tuli DK. Wood ash as a
                    heterogeneous catalyst. Fuel. 2020;277:118091.       potential heterogeneous catalyst for biodiesel synthesis.
                    doi: 10.1016/j.fuel.2020.118091                      Biomass Bioenergy. 2012;41(6):94-106.
                176.  Shen J, Liu Y, Wang X, et al. A comprehensive review      doi: 10.1016/j.biombioe.2012.02.017
                    of  health-benefiting  components  in  rapeseed  oil.   188.  Eldiehy  KSH,  Daimary  N,  Borah  D,  et al. Towards
                    Nutrients. 2023;15:999.                              biodiesel sustainability: Waste sweet potato leaves as
                    doi: 10.3390/nu15040999                              a green heterogeneous catalyst for biodiesel production
                177.  Asir O, Gnanadurai S, Samuel K, Kenthorai J,       using microalgal oil and waste cooking oil. Ind Crops
                    Alagunambi  R.  Biodiesel  production  from  Palm  oil   Prod. 2022;187:115467.
                    using calcined waste animal bone as catalyst. Bioresour      doi: 10.1016/j.indcrop.2022.115467
                    Technol. 2012;116(4):512-516.                   189.  Kumar S, Deswal V. Optimization at low temperature
                    doi: 10.1016/j.biortech.2012.03.112                  transesterification  biodiesel  production  from  soybean
                178.  Widiarti  N, Wijianto  W, Wijayati  N,  et  al. Catalytic   oil methanolysis via response surface methodology.
                    activity of calcium oxide from fishbone waste in waste   Environ Effects. 2019;44:2284-2293.
                    cooking oil transesterification process. J Bahan Alam      doi: 10.1080/15567036.2019.1649331
                    Terbarukan. 2017;6:97-106.                      190.  Anand R, Maheswari R, Hanefeld U.  Catalytic
                    doi: 10.15294/jbat.v6i2.8335                         properties of the novel mesoporous aluminosilicate
                179.  Hari TK, Yaakob Z. Effect of calcination temperature on   AlTUD-1. J Catal. 2006;242:82-91.
                    the application of sodium zirconate solid base catalyst      doi: 10.1016/j.jcat.2006.05.022



                Volume 22 Issue 5 (2025)                        42                           doi: 10.36922/AJWEP025130095
   43   44   45   46   47   48   49   50   51   52   53