Page 41 - AJWEP-22-5
P. 41
Heterogeneous catalysts for biodiesel production
Rep. 2021;15:100750. and heterogeneous catalyst for biodiesel production.
doi: 10.1016/j.biteb.2021.100750 J Taiwan Inst Chem Eng. 2012;43(1):89-94.
9. Gog A, Roman M, Toşa M, Paizs C, Irimie FD. Biodiesel doi: 10.1016/j.jtice.2011.06.003
production using enzymatic transesterification - current 21. Ghosh N, Halder G. Current progress and perspective of
state and perspectives. Renew Energy. 2012;39:10-16. heterogeneous nanocatalytic transesterification towards
doi: 10.1016/j.renene.2011.08.007 biodiesel production from edible and inedible feedstock:
10. Megía PJ, Vizcaíno AJ, Calles JA, Carrero A. Hydrogen A review. Energy Convers Manage. 2022;270:116292.
production technologies: From fossil fuels toward doi: 10.1016/j.enconman.2022.116292
renewable sources. A mini review. Energy Fuels. 22. García-Serna J, Piñero-Hernanz R, Durán-Martín D.
2021;35(20):16403-16415. Inspirational perspectives and principles on the use
doi: 10.1021/acs.energyfuels.1c02501 of catalysts to create sustainability. Catal Today.
11. Jain R, Panwar NL, Agarwal C, Gupta T. A comprehensive 2022;387:237-243.
review on unleashing the power of hydrogen: doi: 10.1016/j.cattod.2021.11.021
Revolutionizing energy systems for a sustainable future. 23. Wang B, Wang B, Shukla SK, Wang R. Enabling
Environ Sci Pollut Res Int. 2024;32:13329-13359. catalysts for biodiesel production via transesterification.
doi: 10.1007/s11356-024-33541-1 Catalysts. 2023;13:740.
12. Mizik T, Gyarmati G. Economic and sustainability of doi: 10.3390/catal13040740
biodiesel production-a systematic literature review. 24. Nisar S, Hanif MA, Rashid U, Hanif A, Akhtar MN,
Clean Technol. 2021;3:19-36. Ngamcharussrivichai C. Trends in widely used catalysts
doi: 10.3390/cleantechnol3010002 for fatty acid methyl esters (fame) production: A review.
13. Martins J, Brito FP. Alternative fuels for internal Catalysts. 2021;11:1085.
combustion engines. Energies. 2020;13:4086. doi: 10.3390/catal11091085
doi: 10.3390/en13164086 25. Gunter F, Martin W, Christian R, Eckhard B, Martin B.
14. Perera F. Pollution from fossil-fuel combustion is the Modelling production cost scenarios for biofuels
leading environmental threat to global pediatric health and fossil fuels in Europe. Lecture Notes Energy.
and equity: Solutions exist. Int J Environ Res Public 2014;7:93-115.
Health. 2017;15(1):16. doi: 10.1007/978-1-4471-6482-1-5
doi: 10.3390/ijerph15010016 26. Alemu T, Alemu AG. Recent developments in catalysts
15. Goren AY, Dincer I, Gogoi SB, Boral P, Patel D. Recent for biodiesel production applications. Adv Bio.
developments on carbon neutrality through carbon 2023;4:1-18.
dioxide capture and utilization with clean hydrogen doi: 10.5772/intechopen.109483
for production of alternative fuels for smart cities. Int J 27. Anand S, Chinnakonda B, Gopinath S. Catalytic
Hydrogen Energy. 2024;79:551-578. applications of hydrotalcite and related materials in
doi: 10.1016/j.ijhydene.2024.06.421 multi-component reactions: Concepts, challenges and
16. Fukuda H, Kondo A, Noda H. Biodiesel fuel production future scope. Sustain Chem Pharm. 2021;22:100458.
by transesterification of oils. J Biosci Bioeng. doi: 10.1016/j.scp.2021.100458
2001;92:405-416. 28. Mukhtar A, Saqib S, Lin H, et al. Current status and
doi: 10.1016/S1389-1723(01)80288-7 challenges in the heterogeneous catalysis for biodiesel
17. Verhelst S, Turner JW, Sileghem L, Vancoillie J. production. Renew Sustain Energy Rev. 2022;157:112012.
Methanol as a fuel for internal combustion engines. doi: 10.1016/j.rser.2021.112012
Progress Energy Combust Sci. 2019;70:43-88. 29. Klaewkla R, Arend M, Hoelderich WF. De Mass Transfer
doi: 10.1016/j.pecs.2018.10.001 Advanced Aspects. Vol. 7. United Kingdom: IntechOpen;
18. Supongsenla A, Changmai B, Vanlalveni C, et al. 2011. p. 29.
Biomass waste-derived catalysts for biodiesel doi: 10.5772/22962
production: Recent advances and key challenges. Renew 30. Liu Y, Biswas B, Hassan M, Naidu R. Green adsorbents
Energy. 2024;223:120031. for environmental remediation: Synthesis methods,
doi: 10.1016/j.renene.2024.120031 ecotoxicity, and reusability prospects. Processes.
19. Iglesias J, Martínez-Salazar I, Maireles-Torres P, 2024;12:1195.
Alonso DM, Mariscal R, Granados ML. Advances in doi: 10.3390/pr12061195
catalytic routes for the production of carboxylic acids 31. Reyes L, Nicolás-Vázquez I, Mora-Diez N, Alvarez-
from biomass: A step forward for sustainable polymers. Idaboy IR. Acid-catalyzed nucleophilic additions to
Chem Soc Rev. 2020;49:5704-5771. carbonyl groups: Is the accepted mechanism the rule or
doi: 10.1039/D0CS00177E an exception? J Organ Chem. 2013;78:2327-2375.
20. Agarwal M, Chauhan G, Chaurasia SP, Singh K. doi: 10.1021/jo302390r
Study of catalytic behavior of KOH as homogeneous 32. Khader EH, Muslim SA, Cata Saady NM, et al.
Volume 22 Issue 5 (2025) 35 doi: 10.36922/AJWEP025130095

