Page 58 - AJWEP-22-5
P. 58

Rajak, et al.

                    doi: 10.1186/s40201-015-0226-7                       NaY supporting Pt or Pd nanoparticles. Catal Today.
                393.  Hsin TM, Chen S, Guo E, Tsai CH, Pruski M, Lin VSY.   2022;405-406:212-220.
                    Calcium  containing  silicate  mixed  oxide-based      doi: 10.1016/j.cattod.2022.05.022
                    heterogeneous catalysts for biodiesel  production.  Top   404.  Jindal  M,  Palla  VCS,  Thallada  B.  Effect  of  zeolite
                    Catal. 2010;53:746-754.                              structure and Si/Al ratio on cotton stalks hydropyrolysis.
                    doi: 10.1007/s11244-010-9462-3                       Bioresour Technol. 2023;376:128933.
                394.  Chmielewska  E. Natural  zeolites  as sustainable  and      doi: 10.1016/j.biortech.2023.128933
                    environmental inorganic resources over the history to   405.  Soltania S, Zamaniyan A, Darian JT, Soltanali S. The
                    presentnatural zeolites as sustainable and environmental   effect of Si/Al ratio of ZSM-12 zeolite on its morphology,
                    inorganic  resources  over  the  history  to  present.  Gen   acidity and crystal size for the catalytic performance in
                    Chem. 2019;5:190001.                                 the HTO process. RSC Adv. 2024;14:5380-5389.
                    doi: 10.21127/yaoyigc20190001                        doi: 10.1039/D3RA08792A
                395.  Sheikh KA, Francesconi  VZ, Zevaco  TA, Sauer J.   406.  Sheoran K, Kaur H, Siwal SS, Saini AK,  Vo  DVN,
                    Carbonylation  of dimethoxymethane: A  study on the   Thakur  VK. Recent  advances  of carbon-based
                    reactivity  of  different  solid  acid  catalysts.  Catal  Sci   nanomaterials  (CBNMs)  for  wastewater  treatment:
                    Technol. 2024;14:1148-1166.                          Synthesis and application.  Chemosphere. 2022;
                    doi: 10.1039/D3CY01286G                              299:134364.
                396.  Almuqati  NS, Aldawsari  AM, Alharbi  KN,  et  al.      doi: 10.1016/j.chemosphere.2022.134364
                    Catalytic production of light Olefins: Perspective and   407.  Bryning  MB,  Milkie  DE,  Islam  MF,  Hough  LA,
                    prospective. Fuel. 2024;366:131270.                  Kikkawa JM, Yodh AG. Carbon nanotube aerogels. Adv
                    doi: 10.1016/j.fuel.2024.131270                      Mater. 2007;19:661-664.
                397.  Khan I, Altaf A, Sadiq S,  et al. Towards  sustainable      doi: 10.1002/adma.200601748
                    solutions: Comprehensive review of advanced porous   408.  Singh  R,  Rawat  H, Kumar  A,  et  al.  Graphene
                    materials  for  CO₂  capture,  hydrogen  generation,   and its hybrid nanocomposite:  A  Metamorphoses
                    pollutant  degradation, and energy application.  Chem   elevation  in  the  field  of  tissue  engineering.  Heliyon.
                    Eng J Adv. 2025;21:100691.                           2024;10(13):e33542.
                    doi: 10.1016/j.ceja.2024.100691                      doi: 10.1016/j.heliyon.2024.e33542
                398.  Abdelwahab O, Thabet WM. Natural zeolites and zeolite   409.  Elgharbawy  AS,  Abdel-Kawi  MA, Saleh  IH,
                    composites for heavy metal removal from contaminated   Hanafy MA, Ali RM. Optimizing biodiesel production:
                    water and their  applications  in aquaculture  Systems:   Energy efficiency and kinetic performance of microwave
                    A review. Egypt J Aquat Res. 2023;49(4):431-443.     and  ultrasonic  transesterification  vs.  conventional
                    doi: 10.1016/j.ejar.2023.11.004                      techniques. Biomass Bioenergy. 2025;193:107593.
                399.  Madhu J, Ramakrishnan  VM, Santhanam  A,  et al.      doi: 10.1016/j.biombioe.2025.107593
                    Comparison  of  three  different  structures  of  zeolites   410.  Javed F, Saif-ul-Allah MW, Ahmed F, et al. Kinetics
                    prepared  by  template-free  hydrothermal  method    of biodiesel  production  from microalgae  using
                    and its CO  adsorption properties.  Environ Res.     microbubble  interfacial  technology.  Bioengineering.
                               2
                    2022;214:113949.                                     2022;9:739.
                    doi: 10.1016/j.envres.2022.113949                    doi: 10.3390/bioengineering9120739
                400.  Zagho  MM,    Hassan  MK,    Khraisheh  M,    411.  Harmsen GJ. Reactive  distillation:  The front-runner
                    Al-Maadeed MAA, Nazarenko S. A review on recent      of  industrial  process  intensification: A  full  review  of
                    advances in CO  separation using zeolite and zeolite-  commercial  applications,  research, scale-up, design
                                  2
                    like materials as adsorbents and fillers in mixed matrix   and operation.  Chem Eng Process Process Intens.
                    membranes (MMMs). Chem Eng J Adv. 2021;6:100091.     2007;46(9):774-780.
                    doi: 10.1016/j.ceja.2021.100091                      doi: 10.1016/j.cep.2007.06.005
                401.  Twohig-Bennett C, Jones A. The health benefits of the   412.  Kiss AA. Novel catalytic reactive distillation processes
                    great outdoors: A systematic review and meta-analysis   for a  sustainable  chemical  industry.  Top Catal.
                    of greenspace exposure and health outcomes. Environ   2019;62:1132-1148.
                    Res. 2018;166:628-637.                               doi: 10.1007/s11244-018-1052-9
                    doi: 10.1016/j.envres.2018.06.030               413.  Fernandez MF, Barroso B, Meyer XM, et al. Experiments
                402.  Maghfirah  A,  Ilmi  MM,  Fajar  ATN,  Kadja  GTM.   and dynamic modeling of a reactive distillation column
                    A review on the green synthesis of hierarchically porous   for the production of ethyl acetate by considering the
                    zeolite. Mater Today Chem. 2020;17:100348.           heterogeneous catalyst pilot complexities.  Chem Eng
                    doi: 10.1016/j.mtchem.2020.100348                    Res Design. 2013;91:2309-2322.
                403.  Khawaja  RE,  Sonar  S,  Barakat  T,  et  al. VOCs      doi: 10.1016/j.cherd.2013.05.013
                    catalytic  removal over hierarchical  porous  zeolite   414.  Sádaba I, Granados ML, Riisager  A,  Taarning E.



                Volume 22 Issue 5 (2025)                        52                           doi: 10.36922/AJWEP025130095
   53   54   55   56   57   58   59   60   61   62   63