Page 59 - AJWEP-22-5
P. 59
Heterogeneous catalysts for biodiesel production
Deactivation of solid catalysts in liquid media: The 426. Yu F, Deng K, Du M, Wang W, Liu F, Liang D.
case of leaching of active sites in biomass conversion Electrochemical CO reduction: From catalysts to
2
reactions. Green Chem. 2015;46. reactive thermodynamics and kinetics. Carbon Capture
doi: 10.1039/C5GC00804B Sci Technol. 2023;6:100081.
415. Bhaskar M, Valavarasu G, Meenakshisundaram A, doi: 10.1016/j.ccst.2022.100081
Balaraman KS. Application of a three phase 427. Checa M, Nogales-Delgado S, Montes V, Encinar JM.
heterogeneous model to analyse the performance of Recent advances in glycerol catalytic valorization:
a pilot plant trickle bed reactor. Petrol Sci Technol. A review. Catalysts. 2020;10:1279.
2002;20:251-268. doi: 10.3390/catal10111279
doi: 10.1081/LFT-120002098 428. Pirzadi Z, Meshkani F, Vo DVN. Enhanced syngas
416. Zhang M, Dong J, Cai P. Mechanisms of mass production from CO reforming of biomass-derived
2
transfer enhancement by phase-transfer catalysis for glycerol: Influence of CaO.Al2O3 support composition
permanganate oxidizing dense non-aqueous phase on the catalytic performance of Ni-based catalysts.
liquid (DNAPL) TCE. Chemosphere. 2020;240:124867. Energy Convers Manage. 2024;311:118227.
doi: 10.1016/j.chemosphere.2019.124867 doi: 10.1016/j.enconman.2024.118227
417. Kim YE, Lee KY, Lee MS. Morphology-dependent 429. Barreto RDT, Ramos LP, Jorge RMM, Jorge LMM.
wrinkled silica-supported Pd catalysts for hydrogenation Turning glycerol surplus into renewable syngas
of furfural under mild conditions. Catal Today. through glycerol steam reforming over a sol-gel
2024;426:114392. Ni–Mo2C-Al2O3 catalyst. Int J Hydrog Energy.
doi: 10.1016/j.cattod.2023.114392 2023;48(44):16614-16629.
418. Dalei NN, Gupta A. Adoption of renewable energy doi: 10.1016/j.ijhydene.2023.01.166
to phase down fossil fuel energy consumption and 430. Qi W, Xu Q, Yan Y. Preparation of syngas by reforming
mitigate territorial emissions: Evidence from BRICS of biological glycerol on charcoal catalyst. Environ
group countries using panel FGLS and panel GEE Prog Sustain Energy. 2016;35:1765-1771.
models. Discov Sustain. 2024;5:52. doi: 10.1002/ep.12388
doi: 10.1007/s43621-024-00237-y 431. Karmakar A, Daftari T, Sivagami K, et al.
419. Sarina S. Overview of catalysts in biodiesel production. A comprehensive insight into Waste to Energy conversion
J Eng Appl Sci. 2016;11. strategies in India and its associated air pollution hazard.
420. Wu Y. Development and application of green catalysts: Environ Technol Innov. 2023;29:103017.
Challenges, optimization, and future perspectives. doi: 10.1016/j.eti.2023.103017
Highlights Sci Eng Technol. 2024;116:308-314. 432. Reshad AS, Tiwari P, Goud VV. Extraction of oil from
doi: 10.54097/3mn50856 rubber seeds for biodiesel application: Optimization of
421. Narasimharao K, Adam L, Karen W. Catalysts in parameters. Fuel. 2015;150:636-644.
production of biodiesel: A review. J Biobased Mater doi: 10.1016/j.fuel.2015.02.058
Bioenergy. 2007;1:19-30. 433. Olatundun EA, Borokini OO, Betiku E. Cocoa pod
doi: 10.1166/jbmb.2007.1976 husk-plantain peel blend as a novel green heterogeneous
422. Opotu LA, Inuwa IM, Wong S, Ngadi N, Razmi FA. catalyst for renewable and sustainable honne oil
Errors and inconsistencies in scientific reporting biodiesel synthesis: A case of biowastes-to-wealth.
of aqueous phase adsorption of contaminants: Renew Energy. 2020;166:163-175.
A bibliometric study. Clean Mater. 2022;5:100100. doi: 10.1016/j.renene.2020.11.131
doi: 10.1016/j.clema.2022.100100 434. Foroutan R, Peighambardoust SJ, Mohammadi R,
423. Oliveira BH, Coradi GV, Oliva-Neto P, Peighambardoust SH, Ramavandi B. Application of
Nascimento VMG. Biocatalytic benefits of immobilized walnut shell ash/ZnO/K2CO3 as a new composite
Fusarium sp. (GFC) lipase from solid state fermentation catalyst for biodiesel generation from Moringa oleifera
on free lipase from submerged fermentation. Ind Crops oil. Fuel. 2022;311:122624.
Prod. 2022;147:112235. doi: 10.1016/j.fuel.2021.122624
doi: 10.1016/j.indcrop.2020.112235 435. Gohain M, Khairujjaman L, Paul AK, et al. Carica
424. Mamtani K, Shahbaz K, Farid MM. Glycerolysis of papaya stem: A source of versatile heterogeneous
free fatty acids: A review. Renew Sustain Energy Rev. catalyst for biodiesel production and C–C bond
2021;137:110501. formation. Renew Energy. 2019;147:541-555.
doi: 10.1016/j.rser.2020.110501 doi: 10.1016/j.renene.2019.09.016
425. Khan S, Ullah MW, Siddique R. Role of recombinant 436. Tsai CH, Tsai WT. Sustainable processes reusing
DNA technology to improve life. Int J Genomics. potassium-rich biomass ash as a green catalyst for
2016;2016:2405954. biodiesel production: A mini-review. Processes.
doi: 10.1155/2016/2405954 2024;12:2736.
Volume 22 Issue 5 (2025) 53 doi: 10.36922/AJWEP025130095

