Page 248 - AJWEP-22-6
P. 248

Qin, et al.

                38.  Zhang  K, Kimball  JS, Nemani  RR,  Running  SW.  A      doi: 10.1038/s41558-024-01996-2
                   continuous satellite-derived global record of land surface   48.  Gao X, Wen R, Lo K, Li J, Yan A. Heterogeneity and
                   evapotranspiration  from 1983 to 2006.  Water Resour   non-linearity of ecosystem responses to climate change
                   Res. 2010;46(9):2009WR008800.                        in the Qilian  Mountains National  Park, China.  J  Arid
                   doi: 10.1029/2009WR008800                            Land. 2023;15(5):508-522.
                39.  Deng Y, Wang X, Wang K, et al. Responses of vegetation      doi: 10.1007/s40333-023-0101-9
                   greenness and carbon cycle to extreme droughts in China.   49.  Yan F, Guo X, Zhang Y, et al. Analysis of the multiple
                   Agric Forest Meteorol. 2021;298-299:108307.          drivers of vegetation cover evolution in the Taihangshan-
                   doi: 10.1016/j.agrformet.2020.108307                 Yanshan region. Sci Rep. 2024;14(1):15306.
                40.  Vicente-Serrano  SM, Gouveia C, Camarero  JJ,      doi: 10.1038/s41598-024-66053-6
                   et  al. Response of vegetation  to drought time-scales   50.  Qiao B, Cao X,  Yang H,  et al. Nonlinear threshold
                   across global  land  biomes.  Proc Natl  Acad  Sci  USA.   effects of environmental drivers on vegetation cover in
                   2013;110(1):52-57.                                   mountain ecosystems: From constraint mechanisms to
                   doi: 10.1073/pnas.1207068110                         adaptive management. Ecol Indic. 2025;173:113328.
                41.  Dimitriadis  P,  Koutsoyiannis  D.  Climacogram     doi: 10.1016/j.ecolind.2025.113328
                   versus autocovariance  and power spectrum  in    51.  Shi S, Wang X, Hu Z, et al. Geographic detector-based
                   stochastic  modelling  for Markovian and Hurst–      quantitative assessment enhances attribution analysis of
                   Kolmogorov processes. Stoch Environ Res Risk Assess.   climate and topography factors to vegetation variation for
                   2015;29(6):1649-1669.                                spatial heterogeneity and coupling. Glob Ecol Conserv.
                   doi: 10.1007/s00477-015-1023-7                       2023;42:e02398.
                42.  Dimitriadis  P,  Koutsoyiannis  D, Iliopoulou  T,      doi: 10.1016/j.gecco.2023.e02398
                   Papanicolaou  P.  A  Global-scale  investigation  of   52.  Liu  Y,  Huang  T,  Qiu  Z,  Guan  Z,  Ma  X.  Effects  of
                   stochastic similarities in marginal distribution and   precipitation changes on fractional vegetation cover in
                   dependence  structure of key hydrological-cycle      the Jinghe River basin from 1998 to 2019. Ecol Inform.
                   processes. Hydrology. 2021;8(2):59.                  2024;80:102505.
                   doi: 10.3390/hydrology8020059                        doi: 10.1016/j.ecoinf.2024.102505
                43.  Wei S, Li X, Wang K, Wang T, Piao S. Two decades   53.  Tian X, Tao Z, Xie Y, Shao W, Zhang S. Spatiotemporal
                   of persistent greening in China despite 2023 climate   evolution and driving mechanism of fractional vegetation
                   extremes. Sci China Earth Sci. 2025;68(4):1064-1073.  coverage in the Yangtze river delta. IEEE J Sel Top Appl
                   doi: 10.1007/s11430-024-1530-7                       Earth Observ Remote Sens. 2024;17:10979-10997.
                44.  Cao S, Zhang L, He Y, et al. Effects and contributions      doi: 10.1109/JSTARS.2024.3407727
                   of meteorological drought on agricultural  drought   54.  Marincowitz  S,  Pham  NQ,  Wingfield  BD,  Roets  F,
                   under  different  climatic  zones  and  vegetation  types  in   Wingfield  MJ.  Microfungi  associated  with  dying
                   Northwest China. Sci Total Environ. 2022;821:153270.  Euphorbia mauritanica in South Africa and their relative
                   doi: 10.1016/j.scitotenv.2022.153270                 pathogenicity. Fungal Syst Evol. 2023;12(1):59-72.
                45.  Wang H, Guan H, Liu B, Chen X. Impacts of climate      doi: 10.3114/fuse.2023.12.04
                   extremes on vegetation dynamics in a transect along the   55.  Litvinenko V. Advances in Raw Material Industries for
                   Hu Line of China. Ecol Indic. 2023;155:111043.       Sustainable  Development  Goals. 1   ed. Boca Raton:
                                                                                                     st
                   doi: 10.1016/j.ecolind.2023.111043                   CRC Press; 2020.
                46.  Qi X, Jia J, Liu H, Lin Z. Relative importance of climate      doi: 10.1201/9781003164395
                   change and human activities for vegetation changes on   56.  Serinaldi  F, Chebana  F,  Kilsby  CG. Dissecting
                   China’s silk road economic belt over multiple timescales.   innovative trend analysis. Stoch Environ Res Risk Assess.
                   CATENA. 2019;180:224-237.                            2020;34(5):733-754.
                   doi: 10.1016/j.catena.2019.04.027                    doi: 10.1007/s00477-020-01797-x
                47.  Urban MC, Alberti M, De Meester L, et al. Interactions   57.  Hamed KH.  Trend detection  in hydrologic data:  The
                   between  climate change  and urbanization  will      Mann-Kendall trend test under the scaling hypothesis.
                   shape the future of biodiversity.  Nat Clim Chang.   J Hydrol. 2008;349(3-4):350-363.
                   2024;14(5):436-447.                                  doi: 10.1016/j.jhydrol.2007.11.009














                Volume 22 Issue 6 (2025)                       242                           doi: 10.36922/AJWEP025350269
   243   244   245   246   247   248   249   250