Page 51 - AN-1-2
P. 51

Advanced Neurology                                             Neuroimaging regarding spatial navigation in AD



               map. Preliminary evidence from unit activity in the freely-  34.  Qasim SE, Fried I, Jacobs J, 2021, Phase precession in the
               moving rat. Brain Res, 34: 171–175.                human hippocampus and entorhinal corex.  Cell, 184(12):
                                                                  3242–3255.e3210.
               https://doi.org/10.1016/0006-8993(71)90358-1
                                                                  https://doi.org/10.1016/j.cell.2021.04.017
            23.  Taube JS, Muller RU, Ranck JB Jr., 1990, Head-direction
               cells recorded from the postsubiculum in freely moving   35.  Harris  MA,  Wolbers  T,  2012,  Ageing effects  on  path
               rats. I. Description and quantitative analysis.  J  Neurosci,   integration and landmark navigation.  Hippocampus,
               10(2): 420–435.                                    22(8): 1770–1780.
               https://doi.org/10.1523/JNEUROSCI.10-02-00420.1990     https://doi.org/10.1002/hipo.22011
            24.  Doeller CF, Barry C, Burgess N, 2010, Evidence for grid cells   36.  Mahmood O, Adamo D, Briceno E,  et al., 2009, Age
               in a human memory network. Nature, 463: 657–661.   differences in visual path integration.  Behav Brain Res,
                                                                  205(1): 88–95.
               https://doi.org/10.1038/nature08704
                                                                  https://doi.org/10.1016/j.bbr.2009.08.001
            25.  Hafting T, Fyhn M, Molden S, et al., 2005, Microstructure
               of a spatial map in the entorhinal cortex.  Nature,   37.  Korman M, Weiss PL, Hochhauser M,  et al., 2019, Effect
               436(7052): 801–806.                                of age on spatial memory performance in real museum vs.
                                                                  computer simulation. BMC Geriatr, 19(1): 165.
               https://doi.org/10.1038/nature03721
                                                                  https://doi.org/10.1186/s12877-019-1167-2
            26.  Solstad T, Boccara CN, Kropff E, et al., 2008, Representation
               of geometric borders in the entorhinal cortex.  Science,   38.  Head D, Isom M, 2010, Age effects on wayfinding and route
               322(5909): 1865–1868.                              learning skills. Behav Brain Res, 209(1): 49–58.
               https://doi.org/10.1126/science.1166466            https://doi.org/10.1016/j.bbr.2010.01.012
                                                               39.  Bryden KJ, Charlton JL, Oxley JA, et al., 2013, Self-reported
            27.  Kropff E, Carmichael JE, Moser MB, et al., 2015, Speed cells
               in the medial entorhinal cortex. Nature, 523(7561): 419–424.   wayfinding ability of older drivers.  Accid  Anal  Prev,
                                                                  59: 277–282.
               https://doi.org/10.1038/nature14622
                                                                  https://doi.org/10.1016/j.aap.2013.06.017
            28.  Kunz L, Schroder TN, Lee H, et al., 2015, Reduced grid-cell-  40.  Rodgers MK, Sindone JA 3 , Moffat SD, 2012, Effects of age
                                                                                      rd
               like representations in adults at genetic risk for Alzheimer’s   on navigation strategy. Neurobiol Aging, 33(1): e215–e222.
               disease. Science, 350(6259): 430–433.
                                                                  https://doi.org/10.1016/j.neurobiolaging.2010.07.021
               https://doi.org/10.1126/science.aac8128
                                                               41.  Harris MA, Wiener JM, Wolbers T, 2012, Aging specifically
            29.  Ekstrom AD, Kahana MJ, Caplan JB, et al., 2003, Cellular   impairs switching to an allocentric navigational strategy.
               networks underlying human spatial navigation.  Nature,   Front Aging Neurosci, 4: 29.
               425(6954): 184–188.
                                                                  https://doi.org/10.3389/fnagi.2012.00029
               https://doi.org/10.1038/nature01964
                                                               42.  Harris MA, Wolbers T, 2014, How age-related strategy
            30.  Diehl GW, Hon OJ, Leutgeb S, et al., 2017, Grid and nongrid   switching  deficits  affect  wayfinding  in  complex
               cells in medial entorhinal cortex represent spatial location   environments. Neurobiol Aging, 35(5): 1095–1102.
               and environmental features with complementary coding
               schemes. Neuron, 94(1): 83–92 e86.                 https://doi.org/10.1016/j.neurobiolaging.2013.10.086
               https://doi.org/10.1016/j.neuron.2017.03.004    43.  Carelli L, Rusconi ML, Scarabelli C, et al., 2011, The transfer
                                                                  from survey (map-like) to route representations into virtual
            31.  Lever C, Burton S, Jeewajee A, et al., 2009, Boundary vector   reality mazes: Effect of age and cerebral lesion. J Neuroeng
               cells in the subiculum of the hippocampal formation.   Rehabil, 8: 6.
               J Neurosci, 29(31): 9771–9777.
                                                                  https://doi.org/10.1186/1743-0003-8-6
               https://doi.org/10.1523/JNEUROSCI.1319-09.2009
                                                               44.  Moffat SD, Kennedy KM, Rodrigue KM,  et al., 2007,
            32.  Okeefe J, Recce ML, 1993, Phase Relationship between   Extrahippocampal contributions to age differences in
               hippocampal place units and the eeg theta-rhythm.   human spatial navigation. Cereb Cortex, 17(6): 1274–1282.
               Hippocampus, 3(3): 317–330.
                                                                  https://doi.org/10.1093/cercor/bhl036
               https://doi.org/10.1002/hipo.450030307
                                                               45.  Driscoll I, Davatzikos C, An Y,  et al., 2009, Longitudinal
            33.  Buzsaki  G,  2002,  Theta  oscillations  in  the  hippocampus.   pattern of regional brain volume change differentiates
               Neuron, 33(3): 325–340.                            normal aging from MCI. Neurology, 72(22): 1906–1913.
               https://doi.org/10.1016/s0896-6273(02)00586-x      https://doi.org/10.1212/WNL.0b013e3181a82634


            Volume 1 Issue 2 (2022)                         12                      https://doi.org/10.36922/an.v1i2.145
   46   47   48   49   50   51   52   53   54   55   56