Page 55 - AN-1-2
P. 55

Advanced Neurology                                             Neuroimaging regarding spatial navigation in AD



            109.  Allison SL, Fagan AM, Morris JC,  et al., 2016, Spatial   120.  Killian NJ, Jutras MJ, Buffalo EA, 2012, A map of visual space
                navigation in preclinical Alzheimer’s disease. J Alzheimers   in the primate entorhinal cortex. Nature, 491(7426): 761–764.
                Dis, 52(1): 77–90.
                                                                  https://doi.org/10.1038/nature11587
               https://doi.org/10.3233/jad-150855
                                                               121.  Rowland DC, Roudi Y, Moser MB, et al., 2016, Ten years of
            110.  Verghese J, Lipton R, Ayers E, 2017, Spatial navigation and   grid cells. Annu Rev Neurosci, 39: 19–40.
                risk of cognitive impairment: A prospective cohort study.
                Alzheimers Dement, 13(9): 985–992.                https://doi.org/10.1146/annurev-neuro-070815-013824
                                                               122.  McNaughton BL, Battaglia FP, Jensen O, et al., 2006, Path
               https://doi.org/10.1016/j.jalz.2017.01.023
                                                                   integration and the neural basis of the “cognitive map”. Nat
            111.  Levine TF, Allison SL, Stojanovic M,  et  al., 2020, Spatial   Rev Neurosci, 7(8): 663–678.
                navigation ability predicts progression of dementia
                symptomatology. Alzheimers Dement, 16(3): 491–500.      https://doi.org/10.1038/nrn1932
               https://doi.org/10.1002/alz.12031               123.  Van Wijngaarden JB, Babl SS, Ito HT, 2020, Entorhinal-
                                                                   retrosplenial circuits for allocentric-egocentric transformation
            112.  Hu W, Zhang X, Tung YC, et al., 2016, Hyperphosphorylation   of boundary coding. Life, 9: e59816.
                determines both the spread and the morphology of tau
                pathology. Alzheimers Dement, 12(10): 1066–1077.      https://doi.org/10.7554/eLife.59816
               https://doi.org/10.1016/j.jalz.2016.01.014      124.  Sargolini F, Fyhn M, Hafting T,  et al., 2006, Conjunctive
                                                                   representation of position, direction, and velocity in
            113.  Li Y, Xu J, Liu Y, et al., 2017, A distinct entorhinal cortex   entorhinal cortex. Science, 312(5774): 758–762.
                to hippocampal CA1 direct circuit for olfactory associative
                learning. Nat Neurosc, 20(4): 559–570.            https://doi.org/10.1126/science.1125572
               https://doi.org/10.1038/nn.4517                 125.  Kunz L, Lee H, Montag C, et al., 2015, Reduced grid-cell-
                                                                   like representations in adults at genetic risk forAlzheimer’s
            114.  Leigh A. Holcomb MN, Jantzen P, et al., 1999, Behavioral   disease. Science, 350(6259): 430–433.
                changes in transgenic mice expressing both amyloid precursor
                protein and presenilin-1 mutations: Lack of association with      https://doi.org/10.1126/science.aac8128
                amyloid deposits. Behav Genet, 29(3): 177–185.   126.  Bates SL, Wolbers T, 2014, How cognitive aging affects
               https://doi.org/10.1023/a:1021691918517             multisensory integration of navigational cues.  Neurobiol
                                                                   Aging, 35(12): 2761–2769.
            115.  Puoliväli J, Wang J, Heikkinen T, et al., 2002, Hippocampal A
                beta 42 levels correlate with spatial memory deficit in APP and      https://doi.org/10.1016/j.neurobiolaging.2014.04.003
                PS1 double transgenic mice. Neurobiol Dis, 9(3): 339–347.   127.  Muessig L, Hauser J, Wills TJ, et al., 2015, A developmental
               https://doi.org/10.1006/nbdi.2002.0481              switch in place cell accuracy coincides with grid cell
                                                                   maturation. Neuron, 86(5): 1167–1173.
            116.  Allison S, Babulal GM, Stout SH,  et  al., 2018, Alzheimer
                disease biomarkers and driving in clinically normal older      https://doi.org/10.1016/j.neuron.2015.05.011
                adults role of spatial navigation abilities.  Alzheimer Dis   128.  Reifenstein ET, Kempter R, Schreiber S, et al., 2012, Grid
                Assoc Disord, 32: 101–106.                         cells in rat entorhinal cortex encode physical space with
               https://doi.org/10.1097/WAD.0000000000000257        independent firing fields and phase precession at the single-
                                                                   trial level. Proc Natl Acad Sci U S A, 109(16): 6301–6306.
            117.  Fu H, Rodriguez GA, Herman M, et al., 2017, Tau pathology
                induces excitatory neuron loss, grid cell dysfunction, and      https://doi.org/10.1073/pnas.1109599109
                spatial memory deficits reminiscent of early Alzheimer’s   129.  Sakkaki S, Barrière S, Bender AC,  et al., 2020, Focal
                Disease. Neuron, 93(3): 533–541.                   dorsal hippocampal nav1.1 knock down alters place cell
               https://doi.org/10.1016/j.neuron.2016.12.023        temporal coordination and spatial behavior. Cereb Cortex,
                                                                   30(9): 5049–5066.
            118.  Stimmell AC, Xu Z, Moseley SC, et al., 2021, Tau pathology
                profile across a parietal-hippocampal brain network is      https://doi.org/10.1093/cercor/bhaa101
                associated with spatial reorientation learning and memory   130.  Moreno A, Wall KJ, Thangavelu K, et al., 2019, A systematic
                performance in the 3xTg-AD mouse. Front Aging, 2: 655015.   review of the use of virtual reality and its effects on cognition
               https://doi.org/10.3389/fragi.2021.655015           in individuals with neurocognitive disorders.  Alzheimers
                                                                   Dement (NY), 5: 834–850.
            119.  Stancu IC, Ris  L, Vasconcelos  B,  et al., 2014, Tauopathy
                contributes to synaptic and cognitive deficits in a murine      https://doi.org/10.1016/j.trci.2019.09.016
                model for Alzheimer’s disease. FASEB J, 28(6): 2620–2631.
                                                               131.  Oliveira J, Gamito P, Souto T, et al., 2021, Virtual reality-
               https://doi.org/10.1096/fj.13-246702                based cognitive stimulation on people with mild to


            Volume 1 Issue 2 (2022)                         16                      https://doi.org/10.36922/an.v1i2.145
   50   51   52   53   54   55   56   57   58   59   60