Page 55 - AN-1-2
P. 55
Advanced Neurology Neuroimaging regarding spatial navigation in AD
109. Allison SL, Fagan AM, Morris JC, et al., 2016, Spatial 120. Killian NJ, Jutras MJ, Buffalo EA, 2012, A map of visual space
navigation in preclinical Alzheimer’s disease. J Alzheimers in the primate entorhinal cortex. Nature, 491(7426): 761–764.
Dis, 52(1): 77–90.
https://doi.org/10.1038/nature11587
https://doi.org/10.3233/jad-150855
121. Rowland DC, Roudi Y, Moser MB, et al., 2016, Ten years of
110. Verghese J, Lipton R, Ayers E, 2017, Spatial navigation and grid cells. Annu Rev Neurosci, 39: 19–40.
risk of cognitive impairment: A prospective cohort study.
Alzheimers Dement, 13(9): 985–992. https://doi.org/10.1146/annurev-neuro-070815-013824
122. McNaughton BL, Battaglia FP, Jensen O, et al., 2006, Path
https://doi.org/10.1016/j.jalz.2017.01.023
integration and the neural basis of the “cognitive map”. Nat
111. Levine TF, Allison SL, Stojanovic M, et al., 2020, Spatial Rev Neurosci, 7(8): 663–678.
navigation ability predicts progression of dementia
symptomatology. Alzheimers Dement, 16(3): 491–500. https://doi.org/10.1038/nrn1932
https://doi.org/10.1002/alz.12031 123. Van Wijngaarden JB, Babl SS, Ito HT, 2020, Entorhinal-
retrosplenial circuits for allocentric-egocentric transformation
112. Hu W, Zhang X, Tung YC, et al., 2016, Hyperphosphorylation of boundary coding. Life, 9: e59816.
determines both the spread and the morphology of tau
pathology. Alzheimers Dement, 12(10): 1066–1077. https://doi.org/10.7554/eLife.59816
https://doi.org/10.1016/j.jalz.2016.01.014 124. Sargolini F, Fyhn M, Hafting T, et al., 2006, Conjunctive
representation of position, direction, and velocity in
113. Li Y, Xu J, Liu Y, et al., 2017, A distinct entorhinal cortex entorhinal cortex. Science, 312(5774): 758–762.
to hippocampal CA1 direct circuit for olfactory associative
learning. Nat Neurosc, 20(4): 559–570. https://doi.org/10.1126/science.1125572
https://doi.org/10.1038/nn.4517 125. Kunz L, Lee H, Montag C, et al., 2015, Reduced grid-cell-
like representations in adults at genetic risk forAlzheimer’s
114. Leigh A. Holcomb MN, Jantzen P, et al., 1999, Behavioral disease. Science, 350(6259): 430–433.
changes in transgenic mice expressing both amyloid precursor
protein and presenilin-1 mutations: Lack of association with https://doi.org/10.1126/science.aac8128
amyloid deposits. Behav Genet, 29(3): 177–185. 126. Bates SL, Wolbers T, 2014, How cognitive aging affects
https://doi.org/10.1023/a:1021691918517 multisensory integration of navigational cues. Neurobiol
Aging, 35(12): 2761–2769.
115. Puoliväli J, Wang J, Heikkinen T, et al., 2002, Hippocampal A
beta 42 levels correlate with spatial memory deficit in APP and https://doi.org/10.1016/j.neurobiolaging.2014.04.003
PS1 double transgenic mice. Neurobiol Dis, 9(3): 339–347. 127. Muessig L, Hauser J, Wills TJ, et al., 2015, A developmental
https://doi.org/10.1006/nbdi.2002.0481 switch in place cell accuracy coincides with grid cell
maturation. Neuron, 86(5): 1167–1173.
116. Allison S, Babulal GM, Stout SH, et al., 2018, Alzheimer
disease biomarkers and driving in clinically normal older https://doi.org/10.1016/j.neuron.2015.05.011
adults role of spatial navigation abilities. Alzheimer Dis 128. Reifenstein ET, Kempter R, Schreiber S, et al., 2012, Grid
Assoc Disord, 32: 101–106. cells in rat entorhinal cortex encode physical space with
https://doi.org/10.1097/WAD.0000000000000257 independent firing fields and phase precession at the single-
trial level. Proc Natl Acad Sci U S A, 109(16): 6301–6306.
117. Fu H, Rodriguez GA, Herman M, et al., 2017, Tau pathology
induces excitatory neuron loss, grid cell dysfunction, and https://doi.org/10.1073/pnas.1109599109
spatial memory deficits reminiscent of early Alzheimer’s 129. Sakkaki S, Barrière S, Bender AC, et al., 2020, Focal
Disease. Neuron, 93(3): 533–541. dorsal hippocampal nav1.1 knock down alters place cell
https://doi.org/10.1016/j.neuron.2016.12.023 temporal coordination and spatial behavior. Cereb Cortex,
30(9): 5049–5066.
118. Stimmell AC, Xu Z, Moseley SC, et al., 2021, Tau pathology
profile across a parietal-hippocampal brain network is https://doi.org/10.1093/cercor/bhaa101
associated with spatial reorientation learning and memory 130. Moreno A, Wall KJ, Thangavelu K, et al., 2019, A systematic
performance in the 3xTg-AD mouse. Front Aging, 2: 655015. review of the use of virtual reality and its effects on cognition
https://doi.org/10.3389/fragi.2021.655015 in individuals with neurocognitive disorders. Alzheimers
Dement (NY), 5: 834–850.
119. Stancu IC, Ris L, Vasconcelos B, et al., 2014, Tauopathy
contributes to synaptic and cognitive deficits in a murine https://doi.org/10.1016/j.trci.2019.09.016
model for Alzheimer’s disease. FASEB J, 28(6): 2620–2631.
131. Oliveira J, Gamito P, Souto T, et al., 2021, Virtual reality-
https://doi.org/10.1096/fj.13-246702 based cognitive stimulation on people with mild to
Volume 1 Issue 2 (2022) 16 https://doi.org/10.36922/an.v1i2.145

