Page 52 - AN-1-2
P. 52

Advanced Neurology                                             Neuroimaging regarding spatial navigation in AD



            46.  Kerbler GM, Nedelska Z, Fripp J, et al., 2015, Basal forebrain   57.  Parizkova M,  Lerch O, Moffat SD,  et al., 2018,  The effect
               atrophy contributes to allocentric navigation impairment in   of Alzheimer’s disease on spatial navigation strategies.
               Alzheimer’s disease patients. Front Aging Neurosci, 7: 185.   Neurobiol Aging, 64: 107–115.
               https://doi.org/10.3389/fnagi.2015.00185           https://doi.org/10.1016/j.neurobiolaging.2017.12.019
            47.  Lovden M, Schaefer S, Noack H,  et al., 2012, Spatial   58.  Plácido J, Ferreira JV, Araújo J, et al., 2021, Beyond the mini-
               navigation training protects the hippocampus against age-  mental state examination: The use of physical and spatial
               related changes during early and late adulthood. Neurobiol   navigation tests to help to screen for mild cognitive impairment
               Aging, 33(3): 620 e629–620 e622.                   and Alzheimer’s disease. J Alzheimers Dis, 81(3): 1243–1252.
               https://doi.org/10.1016/j.neurobiolaging.2011.02.013     https://doi.org/10.3233/jad-210106
            48.  Colombo D, Serino S, Tuena C, et al., 2017, Egocentric and   59.  Ghosh A, Puthusseryppady V, Chan D, et al., 2022, Machine
               allocentric spatial reference frames in aging: A systematic   learning detects altered spatial navigation features in outdoor
               review. Neurosci Biobehav Rev, 80: 605–621.        behaviour of Alzheimer’s disease patients. Sci Rep, 12(1): 3160.
               https://doi.org/10.1016/j.neubiorev.2017.07.012     https://doi.org/10.1038/s41598-022-06899-w
            49.  Konishi K, Etchamendy N, Roy S, et al., 2013, Decreased   60.  Hao X, Huang Y, Li X, et al., 2016, Structural and functional
               functional magnetic resonance imaging activity in the   neural correlates of spatial navigation: A combined voxel-
               hippocampus in favor of the caudate nucleus in older   based  morphometry  and  functional  connectivity  study.
               adults tested in a virtual navigation task.  Hippocampus,   Brain Behav, 6(12): e00572.
               23(11): 1005–1014.
                                                                  https://doi.org/10.1002/brb3.572
               https://doi.org/10.1002/hipo.22181
                                                               61.  Chadwick MJ, Jolly AE, Amos DP,  et al., 2015, A goal
            50.  Moffat SD, Elkins W, Resnick SM, 2006, Age differences in   direction signal in the human entorhinal/subicular region.
               the neural systems supporting human allocentric spatial   Curr Biol, 25(1): 87–92.
               navigation. Neurobiol Aging, 27(7): 965–972.
                                                                  https://doi.org/10.1016/j.cub.2014.11.001
               https://doi.org/10.1016/j.neurobiolaging.2005.05.011
                                                               62.  Hirshhorn M, Grady C, Rosenbaum  RS,  et al., 2012,
            51.  Antonova E, Parslow D, Brammer M,  et al., 2009, Age-  The  hippocampus is  involved  in  mental  navigation for  a
               related neural activity during allocentric spatial memory.   recently learned, but not a highly familiar environment:
               Memory (Hove, England), 17(2): 125–143.            A longitudinal fMRI study. Hippocampus, 22(4): 842–852.
               https://doi.org/10.1080/09658210802077348          https://doi.org/10.1002/hipo.20944
            52.  Jheng SS, Pai MC, 2009, Cognitive map in patients with mild   63.  Viard A, Doeller CF, Hartley T,  et al., 2011, Anterior
               Alzheimer’s  disease:  A  computer-generated  arena  study.   hippocampus and goal-directed spatial decision making.
               Behav Brain Res, 200(1): 42–47.                    J Neurosci, 31(12): 4613–4621.
               https://doi.org/10.1016/j.bbr.2008.12.029          https://doi.org/10.1523/jneurosci.4640-10.2011
            53.  Zanco M, Plácido J, Marinho V,  et al., 2018, Spatial   64.  Xu J, Evensmoen HR, Lehn H,  et al., 2010, Persistent
               navigation in the elderly with Alzheimer’s disease: A cross-  posterior and transient anterior medial temporal lobe
               sectional study. J Alzheimers Dis, 66(4): 1683–1694.   activity during navigation. Neuroimage, 52(4): 1654–1666.
               https://doi.org/10.3233/jad-180819                 https://doi.org/10.1016/j.neuroimage.2010.05.074
            54.  Pai MC, Jan SS, 2020, Have i been here? Sense of location   65.  Ramanoël S, York E, Le Petit M,  et  al., 2019, Age-related
               in  people  with  Alzheimer’s  disease.  Front Aging Neurosci,   differences in functional and structural connectivity in the
               12: 582525.                                        spatial navigation brain network. Front Neural Circuits, 13: 69.
               https://doi.org/10.3389/fnagi.2020.582525          https://doi.org/10.3389/fncir.2019.00069
            55.  Morganti F, Stefanini S, Riva G, 2013, From allo-to egocentric   66.  Boccia M, Sulpizio V, Nemmi F,  et al., 2017, Direct and
               spatial ability in early Alzheimer’s disease: A  study with   indirect parieto-medial temporal pathways for spatial
               virtual reality spatial tasks. Cogn Neurosci, 4(3–4): 171–180.   navigation in humans: Evidence from resting-state functional
               https://doi.org/10.1080/17588928.2013.854762       connectivity. Brain Struct Funct, 222(4): 1945–1957.
            56.  Serino S, Morganti F, Di Stefano F, et al., 2015, Detecting      https://doi.org/10.1007/s00429-016-1318-6
               early egocentric and allocentric impairments deficits in   67.  Hao X, Wang X, Song Y,  et al., 2018, Dual roles of the
               Alzheimer’s disease: An experimental study with virtual   hippocampus and intraparietal sulcus in network integration
               reality. Front Aging Neurosci, 7: 88.
                                                                  and segregation support scene recognition.  Brain Struct
               https://doi.org/10.3389/fnagi.2015.00088           Funct, 223(3): 1473–1485.


            Volume 1 Issue 2 (2022)                         13                      https://doi.org/10.36922/an.v1i2.145
   47   48   49   50   51   52   53   54   55   56   57