Page 81 - AN-1-2
P. 81

Advanced Neurology                                               NMDA receptors in neuropsychiatric diseases



                amyloid precursor protein expression pattern and increases   like dopamine release abnormalities in a mouse model of
                amyloid-ss production. J Neurosci, 30: 15927–15942.   NMDA receptor hypofunction. Schizophr Bull, 45: 138–147.
                https://doi.org/1523/JNEUROSCI.3021-10.2010        https://doi.org/1093/schbul/sby003
            218.  Lai TW, Shyu WC, Wang YT, 2011, Stroke intervention   229.  Coyle JT, Tsai G, Goff D, 2003, Converging evidence of
                pathways: NMDA receptors and beyond. Trends Mol Med,   NMDA  receptor  hypofunction  in the  pathophysiology  of
                17: 266–275.                                       schizophrenia. Ann N Y Acad Sci, 1003: 318–327.
                https://doi.org/1016/j.molmed.2010.12.008          https://doi.org/1196/annals.1300.020
            219.  Dunah AW, Wang Y, Yasuda RP,  et al., 2000, Alterations   230.  Javitt DC, Zukin SR, 1991, Recent advances in the
                in subunit expression, composition, and phosphorylation   phencyclidine model of schizophrenia.  Am J Psychiatry,
                of striatal N-methyl-D-aspartate glutamate receptors in a   148: 1301–1308.
                rat 6-hydroxydopamine model of Parkinson’s disease. Mol
                Pharmacol, 57: 342–352.                            https://doi.org/1176/ajp.148.10.1301
            220.  Gardoni F, Picconi B, Ghiglieri V,  et al., 2006, A critical   231.  Krystal JH, Karper LP, Seibyl JP, et al., 1994, Subanesthetic
                interaction between NR2B and MAGUK in L-DOPA       effects of the noncompetitive NMDA antagonist, ketamine,
                induced dyskinesia. J Neurosci, 26: 2914–2922.     in humans. Psychotomimetic, perceptual, cognitive,
                                                                   and neuroendocrine responses.  Arch Gen Psychiatry,
                https://doi.org/1523/JNEUROSCI.5326-05.2006        51: 199–214.
            221.  Mony L, Kew JN, Gunthorpe MJ,  et al., 2009, Allosteric      https://doi.org/1001/archpsyc.1994.03950030035004
                modulators  of NR2B-containing  NMDA  receptors:
                Molecular mechanisms and therapeutic potential.  Br J   232.  Koek W, Woods JH, Winger GD, 1988, MK-801, a proposed
                Pharmacol, 157: 1301–1317.                         noncompetitive antagonist of excitatory amino acid
                                                                   neurotransmission, produces phencyclidine-like behavioral
                https://doi.org/1111/j.1476-5381.2009.00304.x
                                                                   effects in pigeons, rats and rhesus monkeys.  J  Pharmacol
            222.  Sgambato-Faure V, Cenci MA, 2012, Glutamatergic   Exp Ther, 245: 969–974.
                mechanisms in the dyskinesias induced by pharmacological   233.  Kovacic P, Somanathan R, 2010, Clinical physiology and
                dopamine replacement and deep brain stimulation for the   mechanism of dizocilpine (MK-801): Electron transfer,
                treatment of Parkinson’s disease. Prog Neurobiol, 96: 69–86.
                                                                   radicals, redox metabolites and bioactivity. Oxid Med Cell
                https://doi.org/1016/j.pneurobio.2011.10.005       Longev, 3: 13–22.
            223.  Gardoni F, Sgobio C, Pendolino V, et al., 2012, Targeting      https://doi.org/4161/oxim.3.1.10028
                NR2A-containing NMDA receptors reduces L-DOPA-  234.  Dalmau J, Lancaster E, Martinez-Hernandez E, et al., 2011,
                induced dyskinesias. Neurobiol Aging, 33: 2138–2144.
                                                                   Clinical experience and laboratory investigations in patients
                https://doi.org/1016/j.neurobiolaging.2011.06.019  with anti-NMDAR encephalitis. Lancet Neurol, 10: 63–74.
            224.  Nakazawa K, Sapkota K, 2020, The origin of NMDA      https://doi.org/1016/S1474-4422(10)70253-2
                receptor hypofunction  in  schizophrenia.  Pharmacol Ther,
                205: 107426.                                   235.  1993, A novel gene containing a trinucleotide repeat
                                                                   that is expanded and unstable on Huntington’s disease
                https://doi.org/1016/j.pharmthera.2019.107426      chromosomes.  The  Huntington’s  Disease  Collaborative
            225.  Howes OD, Kapur S, 2009, The dopamine hypothesis of   Research Group. Cell, 72: 971–983.
                schizophrenia: version III--the final common pathway.      https://doi.org/1016/0092-8674(93)90585-e
                Schizophr Bull, 35: 549–562.
                                                               236.  Fan MM, Raymond LA, 2007, N-methyl-D-aspartate
                https://doi.org/1093/schbul/sbp006                 (NMDA) receptor function and excitotoxicity in
            226.  Moghaddam B, Javitt D, 2012, From revolution to   Huntington’s disease. Prog Neurobiol, 81: 272–293.
                evolution:  the  glutamate  hypothesis  of  schizophrenia and      https://doi.org/1016/j.pneurobio.2006.11.003
                its implication for treatment.  Neuropsychopharmacology,
                37: 4–15.                                      237.  Milnerwood AJ, Gladding CM, Pouladi MA,  et  al.,
                                                                   2010, Early increase in extrasynaptic NMDA receptor
                https://doi.org/1038/npp.2011.181                  signaling and expression contributes to phenotype onset in
            227.  Mohn AR, Gainetdinov RR, Caron MG, et al., 1999, Mice   Huntington’s disease mice. Neuron, 65: 178–190.
                with reduced NMDA receptor expression display behaviors      https://doi.org/1016/j.neuron.2010.01.008
                related to schizophrenia. Cell, 98: 427–436.
                                                               238.  Okamoto S, Pouladi MA, Talantova M, et al., 2009, Balance
                https://doi.org/1016/s0092-8674(00)81972-8
                                                                   between synaptic versus extrasynaptic NMDA receptor
            228.  Nakao K, Jeevakumar V, Jiang SZ, et al., 2019, Schizophrenia-  activity influences inclusions and neurotoxicity of mutant


            Volume 1 Issue 2 (2022)                         25                      https://doi.org/10.36922/an.v1i2.148
   76   77   78   79   80   81   82   83   84   85   86