Page 77 - AN-1-2
P. 77

Advanced Neurology                                               NMDA receptors in neuropsychiatric diseases



                https://doi.org/1113/jphysiol.1973.sp010273        https://doi.org/1016/j.neuron.2005.08.034
            131.  Collingridge GL, Kehl SJ, McLennan H, 1983, The   143.  Lu HC, Gonzalez E, Crair MC, 2001, Barrel cortex critical
                antagonism of amino acid-induced excitations of rat   period plasticity is independent of changes in NMDA
                hippocampal CA1 neurones in vitro. J Physiol, 334: 19–31.   receptor subunit composition. Neuron, 32: 619–634.
                https://doi.org/1113/jphysiol.1983.sp014477.       https://doi.org/1016/s0896-6273(01)00501-3
            132.  Morris RG, 1989, Synaptic plasticity and learning: Selective   144.  Zhao MG, Toyoda H, Lee YS, et al., 2005, Roles of NMDA
                impairment of learning rats and blockade of long-term   NR2B subtype receptor in prefrontal long-term potentiation
                potentiation in vivo by the N-methyl-D-aspartate receptor   and contextual fear memory. Neuron, 47: 859-872.
                antagonist AP5. J Neurosci, 9: 3040–3057.          https://doi.org/1016/j.neuron.2005.08.014
            133.  Morris RG, Anderson E, Lynch GS, et al., 1986, Selective   145.  Akashi K, Kakizaki T, Kamiya H,  et al., 2009, NMDA
                impairment of learning and blockade of long-term   receptor GluN2B (GluR epsilon 2/NR2B) subunit is
                potentiation by an N-methyl-D-aspartate receptor   crucial for channel function, postsynaptic macromolecular
                antagonist, AP5. Nature, 319: 774–776.             organization, and actin cytoskeleton at hippocampal CA3
                https://doi.org/1038/319774a0                      synapses. J Neurosci, 29: 10869–10882.
            134.  Norris CM, Foster TC, 1999, MK-801 improves retention in      https://doi.org/1523/JNEUROSCI.5531-08.2009
                aged rats: Implications for altered neural plasticity in age-  146.  Brigman JL, Wright T, Talani G,  et al., 2010, Loss of
                related memory deficits. Neurobiol Learn Mem, 71: 194–206.   GluN2B-containing NMDA receptors in CA1 hippocampus
                https://doi.org/1006/nlme.1998.3864                and cortex impairs long-term depression, reduces
                                                                   dendritic  spine density, and disrupts learning. J  Neurosci,
            135.  Villarreal DM, Do V, Haddad E,  et al., NMDA receptor   30: 4590–4600.
                antagonists sustain LTP and  spatial memory:  Active
                processes mediate LTP decay. Nat Neurosci, 5: 48–52.      https://doi.org/1523/JNEUROSCI.0640-10.2010
                https://doi.org/1038/nn776                     147.  Von Engelhardt, J., Doganci B, Jensen V,  et al., 2008,
                                                                   Contribution of hippocampal and extra-hippocampal
            136.  Josselyn SA, Nguyen PV, 2005, CREB, synapses and memory   NR2B-containing NMDA receptors to performance on
                disorders: past progress and future challenges. Curr Drug   spatial learning tasks. Neuron, 60: 846–860.
                Targets CNS Neurol Disord, 4: 481–497.
                                                                   https://doi.org/1016/j.neuron.2008.09.039(2008)
                https://doi.org/2174/156800705774322058
                                                               148.  Tang  YP, Shimizu  E, Dube GR,  et al.,  1999, Genetic
            137.  Malinow R, Malenka RC, 2002, AMPA receptor trafficking   enhancement of learning and memory in mice.  Nature,
                and synaptic plasticity. Annu Rev Neurosci, 25: 103–126.   401: 63–69.
                https://doi.org/1146/annurev.neuro.25.112701.142758     https://doi.org/1038/43432
            138.  Citri A, Malenka RC, 2008, Synaptic plasticity: multiple forms,   149.  Zhou Y, Takahashi E, Li W, et al., 2007, Interactions between
                functions, and mechanisms.  Neuropsychopharmacology,   the NR2B receptor and CaMKII modulate synaptic plasticity
                33: 18–41.                                         and spatial learning. J Neurosci, 27: 13843–13853.
                https://doi.org/1038/sj.npp.1301559                https://doi.org/1523/JNEUROSCI.4486-07.2007
            139.  Malenka RC, 2003, Synaptic plasticity and AMPA receptor   150.  Berberich S, Punnakkal P, Jensen V, et al., Lack of NMDA
                trafficking. Ann N Y Acad Sci, 1003: 1–11.         receptor subtype selectivity for hippocampal long-term
                https://doi.org/1196/annals.1300.001               potentiation. J Neurosci, 25: 6907–6910.
            140.  Malenka  RC,  Bear  MF,  2004,  LTP  and  LTD:  an      https://doi.org/1523/JNEUROSCI.1905-05.2005
                embarrassment of riches. Neuron, 44: 5–21.     151.  Weitlauf C, Honse Y, Auberson YP, et al., 2005, Activation
                https://doi.org/1016/j.neuron.2004.09.012          of NR2A-containing NMDA receptors is not obligatory
                                                                   for NMDA receptor-dependent  long-term potentiation.
            141.  Strack S, Colbran RJ, 1998, Autophosphorylation-dependent   J Neurosci, 25: 8386–8390.
                targeting of calcium/calmodulin-dependent protein kinase
                II by the NR2B subunit of the N-methyl-  D-aspartate      https://doi.org/1523/JNEUROSCI.2388-05.2005
                receptor. J Biol Chem, 273: 20689–20692.       152.  Cui Z, Feng R, Jacobs S, et al., Increased NR2A: NR2B ratio
                https://doi.org/1074/jbc.273.33.20689              compresses long-term depression range and constrains
                                                                   long-term memory. Sci Rep, 3: 1036.
            142.  Barria A, Malinow R, 2005, NMDA receptor subunit
                composition controls synaptic plasticity by regulating      https://doi.org/1038/srep01036
                binding to CaMKII. Neuron, 48: 289–301.        153.  Hawasli AH, Benavides DR, Nguyen C,  et al., 2007,


            Volume 1 Issue 2 (2022)                         21                      https://doi.org/10.36922/an.v1i2.148
   72   73   74   75   76   77   78   79   80   81   82