Page 74 - AN-1-2
P. 74

Advanced Neurology                                               NMDA receptors in neuropsychiatric diseases



               https://doi.org/10.1073/pnas.0802075105            https://doi.org/10.1038/nn1680
            66.  Awobuluyi M, Yang J, Ye Y, et al., 2007, Subunit-specific   77.  Horak M, Petralia RS, Kaniakova M, et al., 2014, ER to synapse
               roles of glycine-binding domains in activation of NR1/  trafficking of NMDA receptors. Front Cell Neurosci, 8: 394.
               NR3 N-methyl-D-aspartate receptors.  Mol Pharmacol,   https://doi./org/10.3389/fncel.2014.00394
               71(1): 112–122.
                                                               78.  McIlhinney RA, Le Bourdellès B, Molnár E, et al., 1998,
               https://doi.org/10.1124/mol.106.030700             Assembly intracellular targeting and cell surface expression
            67.  Madry C, Mesic I, Nicke A, et al., 2007, Principal role of NR3   of  the  human  N-methyl-D-aspartate  receptor  subunits
               subunits in NR1/NR3 excitatory glycine receptor function.   NR1a and NR2A in transfected cells. Neuropharmacology,
               Biochem Biophys Res Commun, 354(1): 102–108.       37(10–11): 1355–1367.
               https://doi.org/10.1016/j.bbrc.2006.12.153         https://doi.org/10.1016/s0028-3908(98)00121-x
            68.  Retchless S, Gao B, Johnson J W, 2012, A single GluN2   79.  Fukaya M, Kato A, Lovett C,  et al., 2003, Retention of
               subunit residue controls NMDA receptor channel properties   NMDA receptor NR2 subunits in the lumen of endoplasmic
               via intersubunit interaction.  Nat Neurosci, 15:  406–413,   reticulum in targeted NR1 knockout mice. Proc Natl Acad
               S401–S402.                                         Sci U S A, 100(8): 4855–4860.
               https://doi.org/10.1038/nn.3025                    https://doi.org/10.1073/pnas.0830996100
            69.  Chen N, Luo T, Raymond LA, 1999, Subtype-dependence   80.  Horak  M, Chang K,  Wenthold RJ,  2008, Masking  of the
               of NMDA receptor channel open probability.  J  Neurosci,   endoplasmic reticulum retention signals during assembly of
               19(16): 6844–6854.                                 the NMDA receptor. J Neurosci, 28(13): 3500–3509.

               https://doi.org/10.1523/JNEUROSCI.19-16-06844.1999     https://doi.org/10.1523/JNEUROSCI.5239-07.2008
            70.  Errege K, Dravid SM, Banke TG,  et  al., 2005, Subunit-  81.  Standley S, Roche KW, McCallum J,  et al., 2000, PDZ
               specific gating controls rat NR1/NR2A and NR1/NR2B   domain suppression of an ER retention signal in NMDA
               NMDA channel kinetics and synaptic signalling profiles.   receptor NR1 splice variants. Neuron, 28(3): 887–898.
               J Physiol, 563(Pt 2): 345–358.                     https://doi.org/10.1016/s0896-6273(00)00161-6
               https://doi.org/10.1113/jphysiol.2004.080028    82.  Scott DB, Blanpied TA, Swanson GT, et al, 2001, An NMDA
            71.  Sobczyk A, Scheuss V, Svoboda K, 2005, NMDA receptor   receptor ER retention signal regulated by phosphorylation
               subunit-dependent  [Ca ]  signaling  in  individual  and alternative splicing. J Neurosci, 21(3): 3063–3072.
                                  2+
               hippocampal dendritic spines. J Neurosci, 25(26): 6037–6046.      https://doi.org/10.1523/JNEUROSCI.21-09-03063.2001
               https://doi.org/10.1523/JNEUROSCI.1221-05.2005  83.  Prybylowski K, Fu Z, Losi G,  et  al., 2002, Relationship
            72.  Sprengel R, Suchanek B, Amico C, et al., 1998, Importance   between availability of NMDA receptor subunits and their
               of the intracellular domain of NR2 subunits for NMDA   expression at the synapse. J Neurosci, 22(20): 8902–8910.
               receptor function in vivo. Cell, 92(2): 279–289.      https://doi.org/10.1523/JNEUROSCI.22-20-08902.2002
               https://doi.org/10.1016/s0092-8674(00)80921-6   84.  Hawkins LM, Prybylowski K, Chang K, et al., 2004, Export
            73.  Martel MA, Ryan TJ, Bell KF, et al., 2012, The subtype of   from the endoplasmic reticulum of assembled N-methyl-
               GluN2 C-terminal domain determines the response to   d-aspartic acid receptors is controlled by a motif in the
               excitotoxic insults. Neuron, 74(3): 543–556.       c terminus of the NR2 subunit.  J  Biol Chem, 279(28):
                                                                  28903–28910.
               https://doi.org/10.1016/j.neuron.2012.03.021
                                                                  https://doi.org/10.1074/jbc.M402599200
            74.  Sanz-Clemente A, Nicoll RA, Roche KW, 2013, Diversity
               in NMDA receptor composition: Many regulators, many   85.  Yang W, Zheng C, Song Q, et al., 2007, A three amino
               consequences. Neuroscientist, 19(1): 62–75.        acid tail following the TM4 region of the N-methyl-D-
                                                                  aspartate receptor (NR) 2 subunits is sufficient to overcome
               https://doi.org/10.1177/1073858411435129           endoplasmic reticulum retention of NR1-1a subunit. J Biol
            75.  Mu Y, Otsuka T, Horton AC, et al., 2003, Activity-dependent   Chem, 282(1): 9269–9278.
               mRNA splicing controls ER export and synaptic delivery of      https://doi.org/10.1074/jbc.M700050200
               NMDA receptors. Neuron, 40(3): 581–594.
                                                               86.  Sans N, Prybylowski K, Petralia RS, et al., 2003, NMDA
               https://doi.org/10.1016/s0896-6273(03)00676-7      receptor trafficking through an interaction between PDZ
                                                                  proteins and the exocyst complex.  Nat Cell Biol, 5(6):
            76.  Perez-Otano I, Luján R, Tavalin SJ, et al., 2006, Endocytosis
               and synaptic removal of NR3A-containing NMDA receptors   520–530.
               by PACSIN1/syndapin1. Nat Neurosci, 9(5): 611–621.      https://doi.org/10.1038/ncb990



            Volume 1 Issue 2 (2022)                         18                      https://doi.org/10.36922/an.v1i2.148
   69   70   71   72   73   74   75   76   77   78   79