Page 75 - AN-1-2
P. 75

Advanced Neurology                                               NMDA receptors in neuropsychiatric diseases



            87.  Sans N, Wang PY, Du Q, et al., 2005, mPins modulates      https://doi.org/10.1523/JNEUROSCI.0718-12.2012
               PSD-95 and SAP102 trafficking and influences NMDA   98.  Thomas GM, Huganir RL, 2013, Palmitoylation-dependent
               receptor surface expression. Nat Cell Biol, 7(12): 1179–1190.
                                                                  regulation of glutamate receptors and their PDZ domain-
               https://doi.org/10.1038/ncb1325                    containing partners. Biochem Soc Trans, 41: 72–78.
            88.  Sans N, Petralia RS, Wang YX, et al., 2000, A developmental      https://doi.org/10.1042/BST20120223
               change in NMDA receptor-associated proteins at   99.  Lussier MP, Sanz-Clemente A, Roche KW, 2015, Dynamic
               hippocampal synapses. J Neurosci, 20(3): 1260–1271.
                                                                  regulation of N-Methyl-d-aspartate (NMDA) and alpha-
               https://doi.org/10.1523/JNEUROSCI.20-03-01260.2000  amino-3-hydroxy-5-methyl-4-isoxazolepropionic  acid
                                                                  (AMPA) receptors by posttranslational modifications. J Biol
            89.  Muller BM, Kistner U, Kindler S, et al., 1996, SAP102,
               a novel postsynaptic protein that interacts with NMDA   Chem, 290: 28596–28603.
               receptor complexes in vivo. Neuron, 17(2): 255–265.      https://doi.org/10.1074/jbc.R115.652750
               https://doi.org/10.1016/s0896-6273(00)80157-9   100.  Hayashi Y, Shi SH, Esteban JA, et al., 2000, Driving AMPA
                                                                   receptors into synapses by LTP and CaMKII: Requirement for
            90.  Jeyifous O, Waites CL, Specht CG, et al., 2009, SAP97 and
               CASK mediate sorting of NMDA receptors through a    GluR1 and PDZ domain interaction. Science, 287: 2262–2267.
               previously unknown secretory pathway. Nat Neurosci, 12(8):      https://doi.org/10.1126/science.287.5461.2262
               1011-1019.
                                                               101.  Mattison HA, Hayashi T, Barria A, 2012, Palmitoylation
               https://doi.org/10.1038/nn.2362                     at two cysteine clusters on the C-terminus of GluN2A and
            91.  Setou M, Nakagawa T, Seog DH,  et al., 2000, Kinesin   GluN2B differentially control synaptic targeting of NMDA
               superfamily motor protein KIF17 and mLin-10 in      receptors. PLoS One, 7: e49089.
               NMDA receptor-containing vesicle transport.  Science,      https://doi.org/10.1371/journal.pone.0049089
               288: 1796–1802.
                                                               102.  Gu Y, Huganir RL, 2016, Identification of the SNARE
               https://doi.org/10.1126/science.288.5472.1796       complex mediating the exocytosis of NMDA receptors. Proc
                                                                   Natl Acadf Sci U S A, 113: 12280–12285.
            92.  Guillaud L, Setou M, Hirokawa N, 2003, KIF17 dynamics
               and regulation of NR2B trafficking in hippocampal neurons.      https://doi.org/10.1073/pnas.1614042113
               J Neurosci, 23(1): 131–140.
                                                               103.  Ladepeche L, Dupuis JP, Groc L, 2014, Surface trafficking
               https://doi.org/10.1523/JNEUROSCI.23-01-00131.2003  of NMDA receptors: Gathering from a partner to another.
            93.  Yin X, Takei Y, Kido MA,  et  al., 2011, Molecular motor   Seminars Cell Dev Biol, 27: 3–13.
               KIF17  is  fundamental  for  memory  and  learning  via      https://doi.org/10.1016/j.semcdb.2013.10.005
               differential support of synaptic NR2A/2B levels.  Neuron,   104.  Sudhof TC, Rothman JE, 2009, Membrane fusion: grappling
               70(2): 310–325.
                                                                   with SNARE and SM proteins. Science, 323: 474–477.
               https://doi.org/10.1016/j.neuron.2011.02.049
                                                                   https://doi.org/10.1126/science.1161748
            94.  Lin EI, Jeyifous O, Green WN, 2013, CASK regulates SAP97
               conformation and its interactions with AMPA and NMDA   105.  Lan JY, Skeberdis VA, Jover T, et al., 2001, Protein kinase
               receptors. J Neurosci, 33(29): 12067–12076.         C modulates NMDA receptor trafficking and gating.  Nat
                                                                   Neurosci, 4(4): 382–390.
               https://doi.org/10.1523/JNEUROSCI.0816-13.2013
                                                                   https://doi.org/10.1038/86028
            95.  Gardoni F, Mauceri D, Fiorentini C, et al., 2003, CaMKII-  106.  Lan JY, Skeberdis VA, Jover T, et al., 2001, Activation of
               dependent  phosphorylation  regulates  SAP97/NR2A   metabotropic glutamate receptor 1 accelerates NMDA
               interaction. J Biol Chem, 278(45): 44745–44752.
                                                                   receptor trafficking. J Neurosci, 21(16): 6058–6068.
               https://doi.org/10.1074/jbc.M303576200
                                                               107.  Lau CG, Takayasu Y, Rodenas-Ruano A, et al., 2010, SNAP-
            96.  Mauceri D, Gardoni F, Marcello E, et al., 2007, Dual role of   25 is a target of protein kinase C phosphorylation critical to
               CaMKII-dependent SAP97 phosphorylation in mediating   NMDA receptor trafficking. J Neurosci, 30(1): 242–254.
               trafficking and insertion of NMDA receptor subunit NR2A.
               J Neurochem, 100(4): 1032–1046.                     https://doi.org/10.1523/JNEUROSCI.4933-08.2010
                                                               108.  Jurado S, Goswami D, Zhang Y, et al., 2013, LTP requires
               https://doi.org/10.1111/j.1471-4159.2006.04267.x
                                                                   a unique postsynaptic SNARE fusion machinery. Neuron,
            97.  Yin X, Feng X, Takei Y, et al., 2012, Regulation of NMDA   77(3): 542–558.
               receptor transport: A  KIF17-cargo binding/releasing
               underlies synaptic plasticity and memory in vivo. J Neurosci,      https://doi.org/10.1016/j.neuron.2012.11.029
               32: 5486–5499.                                  109.  Washbourne P, Liu XB, Jones EG, et al., 2004, Cycling of


            Volume 1 Issue 2 (2022)                         19                      https://doi.org/10.36922/an.v1i2.148
   70   71   72   73   74   75   76   77   78   79   80