Page 39 - AN-1-3
P. 39
Advanced Neurology Inflammation and gut microbiota in depression
https://doi.org/10.1016/j.jpsychires.2016.07.019 https://doi.org/10.1038/nri.2015.5
34. Zhang Y, Huang R, Cheng M, et al., 2019, Gut microbiota 45. Wu H, Denna TH, Storkersen JN, et al., 2019, Beyond a
from NLRP3-deficient mice ameliorates depressive-like neurotransmitter: The role of serotonin in inflammation and
behaviors by regulating astrocyte dysfunction via circHIPK2. immunity. Pharmacol Res, 140: 100–114.
Microbiome, 7: 116.
https://doi.org/10.1016/j.phrs.2018.06.015
https://doi.org/10.1186/s40168-019-0733-3
46. Correia AS, Cardoso A, Vale N, 2021, Highlighting immune
35. McGuinness AJ, Davis JA, Dawson SL, et al., 2022, A system and stress in major depressive disorder, Parkinson’s,
systematic review of gut microbiota composition in and Alzheimer’s Diseases, with a connection with serotonin.
observational studies of major depressive disorder, bipolar Int J Mol Sci, 22: 8525.
disorder and schizophrenia. Mol Psychiatry, 27: 1920–1935.
https://doi.org/10.3390/ijms22168525
http://doi.org/10.1038/s41380-022-01456-3
47. Niklasson F, Agren H, 1984, Brain energy metabolism and
36. Fung TC, Olson CA, Hsiao EY, 2017, Interactions between blood-brain barrier permeability in depressive patients:
the microbiota, immune and nervous systems in health and Analyses of creatine, creatinine, urate, and albumin in CSF
disease. Nat Neurosci, 20: 145–155. and blood. Biol Psychiatry, 19: 1183–1206.
https://doi.org/10.1038/nn.4476 48. Beurel E, Lowell JA, Jope RS, 2018, Distinct characteristics
37. Rutsch A, Kantsjo JB, Ronchi F, 2020, The gut-brain axis: of hippocampal pathogenic T(H)17 cells in a mouse model
How microbiota and host inflammasome influence brain of depression. Brain Behav Immun, 73: 180–191.
physiology and pathology. Front Immunol, 11: 604179. https://doi.org/10.1016/j.bbi.2018.04.012
https://doi.org/10.3389/fimmu.2020.604179 49. Beurel E, Harrington LE, Jope RS, 2013, Inflammatory T
38. Carlessi AS, Borba LA, Zugno AI, et al., 2021, Gut microbiota- helper 17 cells promote depression-like behavior in mice.
brain axis in depression: The role of neuroinflammation. Eur Biol Psychiatry, 73: 622–630.
J Neurosci, 53: 222–235. https://doi.org/10.1016/j.biopsych.2012.09.021
https://doi.org/10.1111/ejn.14631 50. Lee J, Venna VR, Durgan DJ, et al., 2020, Young versus aged
39. Parker A, Fonseca S, Carding SR, 2020, Gut microbes and microbiota transplants to germ-free mice: Increased short-
metabolites as modulators of blood-brain barrier integrity chain fatty acids and improved cognitive performance. Gut
and brain health. Gut Microbes, 11: 135–157. Microbes, 12: 1–14.
https://doi.org/10.1080/19490976.2019.1638722 https://doi.org/10.1080/19490976.2020.1814107
40. Zhao J, Bi W, Xiao S, et al., 2019, Neuroinflammation 51. O’Riordan KJ, Collins MK, Moloney GM, et al., 2022, Short
induced by lipopolysaccharide causes cognitive impairment chain fatty acids: Microbial metabolites for gut-brain axis
in mice. Sci Rep, 9: 5790. signalling. Mol Cell Endocrinol, 546: 111572.
https://doi.org/10.1038/s41598-019-42286-8 https://doi.org/10.1016/j.mce.2022.111572
41. Kohler CA, Freitas TH, Maes M, et al., 2017, Peripheral 52. Tang CF, Wang CY, Wang JH, et al., Short-chain fatty acids
cytokine and chemokine alterations in depression: A meta- ameliorate depressive-like behaviors of high fructose-fed
analysis of 82 studies. Acta Psychiatr Scand, 135: 373–387. mice by rescuing hippocampal neurogenesis decline and
blood-brain barrier damage. Nutrients, 14: 1882.
https://doi.org/10.1111/acps.12698
https://doi.org/10.3390/nu14091882
42. Alvarez-Mon MA, Gomez-Lahoz AM, Orozco A, et al., 2021,
Expansion of CD4 T lymphocytes expressing interleukin 17 53. Rothhammer V, Mascanfroni ID, Bunse L, et al., 2016,
and tumor necrosis factor in patients with major depressive Type I interferons and microbial metabolites of tryptophan
disorder. J Pers Med, 11: 220. modulate astrocyte activity and central nervous system
inflammation via the aryl hydrocarbon receptor. Nat Med,
https://doi.org/10.3390/jpm11030220
22: 586–957.
43. Zunszain PA, Anacker C, Cattaneo A, et al., 2011, https://doi.org/10.1038/nm.4106
Glucocorticoids, cytokines and brain abnormalities in
depression. Prog Neuropsychopharmacol Biol Psychiatry, 54. Scott SA, Fu J, Chang PV, 2020, Microbial tryptophan metabolites
35: 722–729. regulate gut barrier function via the aryl hydrocarbon receptor.
Proc Natl Acad Sci U S A, 117: 19376–19387.
https://doi.org/10.1016/j.pnpbp.2010.04.011
https://doi.org/10.1073/pnas.2000047117
44. Miller AH, Raison CL, 2016, The role of inflammation
in depression: from evolutionary imperative to modern 55. Barden N, 2004, Implication of the hypothalamic-pituitary-
treatment target. Nat Rev Immunol, 16: 22–34. adrenal axis in the physiopathology of depression.
Volume 1 Issue 3 (2022) 11 https://doi.org/10.36922/an.v1i3.272

