Page 39 - AN-1-3
P. 39

Advanced Neurology                                               Inflammation and gut microbiota in depression



               https://doi.org/10.1016/j.jpsychires.2016.07.019     https://doi.org/10.1038/nri.2015.5
            34.  Zhang Y, Huang R, Cheng M, et al., 2019, Gut microbiota   45.  Wu  H,  Denna  TH,  Storkersen  JN, et al.,  2019,  Beyond  a
               from NLRP3-deficient mice ameliorates depressive-like   neurotransmitter: The role of serotonin in inflammation and
               behaviors by regulating astrocyte dysfunction via circHIPK2.   immunity. Pharmacol Res, 140: 100–114.
               Microbiome, 7: 116.
                                                                  https://doi.org/10.1016/j.phrs.2018.06.015
               https://doi.org/10.1186/s40168-019-0733-3
                                                               46.  Correia AS, Cardoso A, Vale N, 2021, Highlighting immune
            35.  McGuinness AJ, Davis JA, Dawson SL, et al., 2022, A   system and stress in major depressive disorder, Parkinson’s,
               systematic review of gut microbiota composition in   and Alzheimer’s Diseases, with a connection with serotonin.
               observational studies of major depressive disorder, bipolar   Int J Mol Sci, 22: 8525.
               disorder and schizophrenia. Mol Psychiatry, 27: 1920–1935.
                                                                  https://doi.org/10.3390/ijms22168525
               http://doi.org/10.1038/s41380-022-01456-3
                                                               47.  Niklasson F, Agren H, 1984, Brain energy metabolism and
            36.  Fung TC, Olson CA, Hsiao EY, 2017, Interactions between   blood-brain barrier permeability in depressive patients:
               the microbiota, immune and nervous systems in health and   Analyses of creatine, creatinine, urate, and albumin in CSF
               disease. Nat Neurosci, 20: 145–155.                and blood. Biol Psychiatry, 19: 1183–1206.
               https://doi.org/10.1038/nn.4476                 48.  Beurel E, Lowell JA, Jope RS, 2018, Distinct characteristics
            37.  Rutsch A, Kantsjo JB, Ronchi F, 2020, The gut-brain axis:   of hippocampal pathogenic T(H)17 cells in a mouse model
               How microbiota and host inflammasome influence brain   of depression. Brain Behav Immun, 73: 180–191.
               physiology and pathology. Front Immunol, 11: 604179.      https://doi.org/10.1016/j.bbi.2018.04.012
               https://doi.org/10.3389/fimmu.2020.604179       49.  Beurel E, Harrington LE, Jope RS, 2013, Inflammatory T
            38.  Carlessi AS, Borba LA, Zugno AI, et al., 2021, Gut microbiota-  helper 17 cells promote depression-like behavior in mice.
               brain axis in depression: The role of neuroinflammation. Eur   Biol Psychiatry, 73: 622–630.
               J Neurosci, 53: 222–235.                           https://doi.org/10.1016/j.biopsych.2012.09.021
               https://doi.org/10.1111/ejn.14631               50.  Lee J, Venna VR, Durgan DJ, et al., 2020, Young versus aged
            39.  Parker A, Fonseca S, Carding SR, 2020, Gut microbes and   microbiota transplants to germ-free mice: Increased short-
               metabolites as modulators of blood-brain barrier integrity   chain fatty acids and improved cognitive performance. Gut
               and brain health. Gut Microbes, 11: 135–157.       Microbes, 12: 1–14.
               https://doi.org/10.1080/19490976.2019.1638722      https://doi.org/10.1080/19490976.2020.1814107
            40.  Zhao J, Bi W, Xiao S, et al., 2019, Neuroinflammation   51.  O’Riordan KJ, Collins MK, Moloney GM, et al., 2022, Short
               induced by lipopolysaccharide causes cognitive impairment   chain fatty acids: Microbial metabolites for gut-brain axis
               in mice. Sci Rep, 9: 5790.                         signalling. Mol Cell Endocrinol, 546: 111572.
               https://doi.org/10.1038/s41598-019-42286-8         https://doi.org/10.1016/j.mce.2022.111572
            41.  Kohler CA, Freitas TH, Maes M, et al., 2017, Peripheral   52.  Tang CF, Wang CY, Wang JH, et al., Short-chain fatty acids
               cytokine and chemokine alterations in depression: A meta-  ameliorate depressive-like behaviors of high fructose-fed
               analysis of 82 studies. Acta Psychiatr Scand, 135: 373–387.   mice by rescuing hippocampal neurogenesis decline and
                                                                  blood-brain barrier damage. Nutrients, 14: 1882.
               https://doi.org/10.1111/acps.12698
                                                                  https://doi.org/10.3390/nu14091882
            42.  Alvarez-Mon MA, Gomez-Lahoz AM, Orozco A, et al., 2021,
               Expansion of CD4 T lymphocytes expressing interleukin 17   53.  Rothhammer V, Mascanfroni ID, Bunse L,  et  al., 2016,
               and tumor necrosis factor in patients with major depressive   Type I interferons and microbial metabolites of tryptophan
               disorder. J Pers Med, 11: 220.                     modulate astrocyte activity and central nervous system
                                                                  inflammation via the aryl hydrocarbon receptor. Nat Med,
               https://doi.org/10.3390/jpm11030220
                                                                  22: 586–957.
            43.  Zunszain  PA,  Anacker  C, Cattaneo  A, et al.,  2011,      https://doi.org/10.1038/nm.4106
               Glucocorticoids, cytokines and brain abnormalities in
               depression.  Prog Neuropsychopharmacol Biol Psychiatry,   54.  Scott SA, Fu J, Chang PV, 2020, Microbial tryptophan metabolites
               35: 722–729.                                       regulate gut barrier function via the aryl hydrocarbon receptor.
                                                                  Proc Natl Acad Sci U S A, 117: 19376–19387.
               https://doi.org/10.1016/j.pnpbp.2010.04.011
                                                                  https://doi.org/10.1073/pnas.2000047117
            44.  Miller AH, Raison CL, 2016, The role of inflammation
               in depression: from evolutionary imperative to modern   55.  Barden N, 2004, Implication of the hypothalamic-pituitary-
               treatment target. Nat Rev Immunol, 16: 22–34.      adrenal axis in the physiopathology of depression.


            Volume 1 Issue 3 (2022)                         11                      https://doi.org/10.36922/an.v1i3.272
   34   35   36   37   38   39   40   41   42   43   44