Page 40 - AN-1-3
P. 40

Advanced Neurology                                               Inflammation and gut microbiota in depression



               J Psychiatry Neurosci, 29: 185–193.             67.  Li Z, Yi CX, Katiraei S, et al., 2018, Butyrate reduces appetite
                                                                  and activates brown adipose tissue via the gut-brain neural
            56.  Wang X, Li Y, Wu L, et al., 2021, Dysregulation of the gut-
               brain-skin axis and key overlapping inflammatory and   circuit. Gut, 67: 1269–1279.
               immune mechanisms of psoriasis and depression. Biomed      https://doi.org/10.1136/gutjnl-2017-314050
               Pharmacother, 137: 111065.
                                                               68.  Arnoldussen IAC, Wiesmann M, Pelgrim CE, et al., 2017,
               https://doi.org/10.1016/j.biopha.2020.111065       Butyrate restores HFD-induced adaptations in brain
            57.  Sudo N, Chida Y, Aiba Y, et al., 2004, Postnatal microbial   function and metabolism in mid-adult obese mice.  Int J
               colonization programs the hypothalamic-pituitary-adrenal   Obes (Lond), 41: 935–944.
               system for stress response in mice. J Physiol, 558: 263–275.      https://doi.org/10.1038/ijo.2017.52
               https://doi.org/10.1113/jphysiol.2004.063388    69.  Liu J, Sun J, Wang F, et al., 2015, Neuroprotective effects of
            58.  Luckey TD, 1965, Effects of microbes on germfree animals.   clostridium butyricum against vascular dementia in mice
               Adv Appl Microbiol, 7: 169–223.                    via metabolic butyrate. Biomed Res Int, 2015: 412946.
               https://doi.org/10.1016/s0065-2164(08)70387-3      https://doi.org/10.1155/2015/412946
            59.  Hernandez-Chirlaque C, Aranda CH, Ocon B, et al., 2016,   70.  Byrne CS, Chambers ES, Alhabeeb H, et al., 2016, Increased
               Germ-free and antibiotic-treated mice are highly susceptible to   colonic propionate reduces anticipatory reward responses in
               epithelial injury in DSS colitis. J Crohns Colitis, 10: 1324–1335.   the human striatum to high-energy foods. Am J Clin Nutr,
                                                                  104: 5–14.
               https://doi.org/10.1093/ecco-jcc/jjw096
                                                                  https://doi.org/10.3945/ajcn.115.126706
            60.  Yang Y, Eguchi A, Wan X, et al., 2023, A role of gut-
               microbiota-brain axis via subdiaphragmatic vagus nerve in   71.  van de Wouw M, Boehme M, Lyte JM, et al., 2018, Short-
               depression-like phenotypes in Chrna7 knock-out mice. Prog   chain  fatty  acids:  Microbial metabolites that alleviate
               Neuropsychopharmacol Biol Psychiatry, 120: 110652.   stress-induced brain-gut axis alterations. J  Physiol,
                                                                  596: 4923–4944.
               https://doi.org/10.1016/j.pnpbp.2022.110652
                                                                  https://doi.org/10.1113/JP276431
            61.  Rojas OL, Probstel Ak, Porfilio EA, et al., 2019, Recirculating
               intestinal IgA-producing cells regulate neuroinflammation   72.  Falomir-Lockhart LJ, Cavazzutti GF, Gimenez E,  et  al.,
               via IL-10. Cell, 176: 610–624.e18.                 Fatty acid signaling mechanisms in neural cells: Fatty acid
                                                                  receptors. Front Cell Neurosci, 13: 162.
               https://doi.org/10.1016/j.cell.2018.11.035
                                                                  https://doi.org/10.3389/fncel.2019.00162
            62.  Fitzpatrick Z, Frazer G, Ferro A, et al., 2020, Gut-educated
               IgA plasma cells defend the meningeal venous sinuses.   73.  Erny D, de Angelis AL, Jaitin D, et al., 2015, Host microbiota
               Nature, 587: 472–476.                              constantly control maturation and function of microglia in
                                                                  the CNS. Nat Neurosci, 18: 965–977.
               https://doi.org/10.1038/s41586-020-2886-4
                                                                  https://doi.org/10.1038/nn.4030
            63.  Sanmarco LM, Wheeler MA, Gutierrez-Vazquez C, et al.,
               2021, Gut-licensed IFNgamma(+) NK cells drive LAMP1(+)  74.  Maslowski KM, Vieira AT, Ng A, et al., 2009, Regulation
               TRAIL(+) anti-inflammatory astrocytes. Nature, 590: 473–479.   of inflammatory responses by gut microbiota and
                                                                  chemoattractant receptor GPR43. Nature, 461: 1282–1286.
               https://doi.org/10.1038/s41586-020-03116-4
                                                                  https://doi.org/10.1038/nature08530
            64.  Verkhratsky A,  Illes  P, Tang  Y, et al., 2021,  The anti-
               inflammatory astrocyte revealed: The role of the microbiome   75.  Oldendorf WH, 1973, Carrier-mediated blood-brain barrier
               in shaping brain defences.  Signal Transduct Target Ther,   transport of short-chain monocarboxylic organic acids. Am
               6: 150.                                            J Physiol, 224: 1450–1453.
               https://doi.org/10.1038/s41392-021-00577-5         https://doi.org/10.1152/ajplegacy.1973.224.6.1450
            65.  Koh A, De Vadder F, Kovatcheva-Datchary P, et al., 2016,   76.  Agirman G, Hsiao EY, 2021, SnapShot: The microbiota-gut-
               From dietary fiber to host physiology: Short-chain fatty   brain axis. Cell, 184: 2524–2524.e1.
               acids as key bacterial metabolites. Cell, 165: 1332–1345.
                                                                  https://doi.org/10.1016/j.cell.2021.03.022
               https://doi.org/10.1016/j.cell.2016.05.041
                                                               77.  Xiao  S, Jiang S,  Qian D, et al., 2020,  Modulation  of
            66.  Cai Y, Folkerts J, Folkerts G, et al., 2020, Microbiota-  microbially derived short-chain fatty acids on intestinal
               dependent and  -independent effects of dietary fibre on   homeostasis, metabolism, and neuropsychiatric disorder.
               human health. Br J Pharmacol, 177: 1363–1381.      Appl Microbiol Biotechnol, 104: 589–601.
               https://doi.org/10.1111/bph.14871                  https://doi.org/10.1007/s00253-019-10312-4


            Volume 1 Issue 3 (2022)                         12                      https://doi.org/10.36922/an.v1i3.272
   35   36   37   38   39   40   41   42   43   44   45