Page 40 - AN-1-3
P. 40
Advanced Neurology Inflammation and gut microbiota in depression
J Psychiatry Neurosci, 29: 185–193. 67. Li Z, Yi CX, Katiraei S, et al., 2018, Butyrate reduces appetite
and activates brown adipose tissue via the gut-brain neural
56. Wang X, Li Y, Wu L, et al., 2021, Dysregulation of the gut-
brain-skin axis and key overlapping inflammatory and circuit. Gut, 67: 1269–1279.
immune mechanisms of psoriasis and depression. Biomed https://doi.org/10.1136/gutjnl-2017-314050
Pharmacother, 137: 111065.
68. Arnoldussen IAC, Wiesmann M, Pelgrim CE, et al., 2017,
https://doi.org/10.1016/j.biopha.2020.111065 Butyrate restores HFD-induced adaptations in brain
57. Sudo N, Chida Y, Aiba Y, et al., 2004, Postnatal microbial function and metabolism in mid-adult obese mice. Int J
colonization programs the hypothalamic-pituitary-adrenal Obes (Lond), 41: 935–944.
system for stress response in mice. J Physiol, 558: 263–275. https://doi.org/10.1038/ijo.2017.52
https://doi.org/10.1113/jphysiol.2004.063388 69. Liu J, Sun J, Wang F, et al., 2015, Neuroprotective effects of
58. Luckey TD, 1965, Effects of microbes on germfree animals. clostridium butyricum against vascular dementia in mice
Adv Appl Microbiol, 7: 169–223. via metabolic butyrate. Biomed Res Int, 2015: 412946.
https://doi.org/10.1016/s0065-2164(08)70387-3 https://doi.org/10.1155/2015/412946
59. Hernandez-Chirlaque C, Aranda CH, Ocon B, et al., 2016, 70. Byrne CS, Chambers ES, Alhabeeb H, et al., 2016, Increased
Germ-free and antibiotic-treated mice are highly susceptible to colonic propionate reduces anticipatory reward responses in
epithelial injury in DSS colitis. J Crohns Colitis, 10: 1324–1335. the human striatum to high-energy foods. Am J Clin Nutr,
104: 5–14.
https://doi.org/10.1093/ecco-jcc/jjw096
https://doi.org/10.3945/ajcn.115.126706
60. Yang Y, Eguchi A, Wan X, et al., 2023, A role of gut-
microbiota-brain axis via subdiaphragmatic vagus nerve in 71. van de Wouw M, Boehme M, Lyte JM, et al., 2018, Short-
depression-like phenotypes in Chrna7 knock-out mice. Prog chain fatty acids: Microbial metabolites that alleviate
Neuropsychopharmacol Biol Psychiatry, 120: 110652. stress-induced brain-gut axis alterations. J Physiol,
596: 4923–4944.
https://doi.org/10.1016/j.pnpbp.2022.110652
https://doi.org/10.1113/JP276431
61. Rojas OL, Probstel Ak, Porfilio EA, et al., 2019, Recirculating
intestinal IgA-producing cells regulate neuroinflammation 72. Falomir-Lockhart LJ, Cavazzutti GF, Gimenez E, et al.,
via IL-10. Cell, 176: 610–624.e18. Fatty acid signaling mechanisms in neural cells: Fatty acid
receptors. Front Cell Neurosci, 13: 162.
https://doi.org/10.1016/j.cell.2018.11.035
https://doi.org/10.3389/fncel.2019.00162
62. Fitzpatrick Z, Frazer G, Ferro A, et al., 2020, Gut-educated
IgA plasma cells defend the meningeal venous sinuses. 73. Erny D, de Angelis AL, Jaitin D, et al., 2015, Host microbiota
Nature, 587: 472–476. constantly control maturation and function of microglia in
the CNS. Nat Neurosci, 18: 965–977.
https://doi.org/10.1038/s41586-020-2886-4
https://doi.org/10.1038/nn.4030
63. Sanmarco LM, Wheeler MA, Gutierrez-Vazquez C, et al.,
2021, Gut-licensed IFNgamma(+) NK cells drive LAMP1(+) 74. Maslowski KM, Vieira AT, Ng A, et al., 2009, Regulation
TRAIL(+) anti-inflammatory astrocytes. Nature, 590: 473–479. of inflammatory responses by gut microbiota and
chemoattractant receptor GPR43. Nature, 461: 1282–1286.
https://doi.org/10.1038/s41586-020-03116-4
https://doi.org/10.1038/nature08530
64. Verkhratsky A, Illes P, Tang Y, et al., 2021, The anti-
inflammatory astrocyte revealed: The role of the microbiome 75. Oldendorf WH, 1973, Carrier-mediated blood-brain barrier
in shaping brain defences. Signal Transduct Target Ther, transport of short-chain monocarboxylic organic acids. Am
6: 150. J Physiol, 224: 1450–1453.
https://doi.org/10.1038/s41392-021-00577-5 https://doi.org/10.1152/ajplegacy.1973.224.6.1450
65. Koh A, De Vadder F, Kovatcheva-Datchary P, et al., 2016, 76. Agirman G, Hsiao EY, 2021, SnapShot: The microbiota-gut-
From dietary fiber to host physiology: Short-chain fatty brain axis. Cell, 184: 2524–2524.e1.
acids as key bacterial metabolites. Cell, 165: 1332–1345.
https://doi.org/10.1016/j.cell.2021.03.022
https://doi.org/10.1016/j.cell.2016.05.041
77. Xiao S, Jiang S, Qian D, et al., 2020, Modulation of
66. Cai Y, Folkerts J, Folkerts G, et al., 2020, Microbiota- microbially derived short-chain fatty acids on intestinal
dependent and -independent effects of dietary fibre on homeostasis, metabolism, and neuropsychiatric disorder.
human health. Br J Pharmacol, 177: 1363–1381. Appl Microbiol Biotechnol, 104: 589–601.
https://doi.org/10.1111/bph.14871 https://doi.org/10.1007/s00253-019-10312-4
Volume 1 Issue 3 (2022) 12 https://doi.org/10.36922/an.v1i3.272

