Page 75 - AN-1-3
P. 75
Advanced Neurology BRRS: A screening and monitoring tool for better prognosis in AD
2013, Increased functional connectivity and brain atrophy in https://doi.org/10.1007/s00330-017-4951-4
elderly with subjective memory complaints. Brain Connect, 38. Fu L, Maes JH, Kessels RP, et al., 2017, To boost or to
3(4): 353–362.
CRUNCH? Effect of effortful encoding on episodic memory
https://doi.org/10.1089/brain.2013.0144 in older adults is dependent on executive functioning. PLoS
One, 12(3): e0174217.
31. Mormino EC, Smiljic A, Hayenga AO, et al., 2011,
Relationships between β-amyloid and functional https://doi.org/10.1371/journal.pone.0174217
connectivity in different components of the default mode 39. Alcalá-Lozano R, Morelos-Santana E, Cortés-Sotres JF,
network in aging. Cereb Cortex, 21(10): 2399–2407.
et al., 2018, Similar clinical improvement and maintenance
https://doi.org/10.1093/cercor/bhr025 after rTMS at 5 Hz using a simple vs. complex protocol in
alzheimer’s disease. Brain Stimul, 11(3): 625–627.
32. Bachurin SO, Gavrilova SI, Samsonova A, et al., 2018, Mild
cognitive impairment due to alzheimer disease: Contemporary https://doi.org/10.1016/j.brs.2017.12.011
approaches to diagnostics and pharmacological intervention. 40. Sandrini M, Umiltà C, Rusconi E, 2011, The use of
Pharmacol Res, 129: 216–226.
transcranial magnetic stimulation in cognitive neuroscience:
https://doi.org/10.1016/j.phrs.2017.11.021 A new synthesis of methodological issues. Neurosci Biobehav
Rev, 35(3): 516–536.
33. Graff-Radford J, Arenaza-Urquijo EM, Knopman DS,
et al., 2019, White matter hyperintensities: Relationship to https://doi.org/10.1016/j.neubiorev.2010.06.005
amyloid and tau burden. Brain, 142(8): 2483–2491.
41. Sullivan MD, Anderson JAE, Turner GR, et al., 2019,
https://doi.org/10.1093/brain/awz162 Intrinsic neurocognitive network connectivity differences
between normal aging and mild cognitive impairment are
34. Kuchtova B, Wurst Z, Mrzilkova J, et al., 2018, Compensatory
shift of subcallosal area and paraterminal gyrus white matter associated with cognitive status and age. Neurobiol Aging,
parameters on DTI in patients with alzheimer disease. Curr 73: 219–228.
Alzheimer Res, 15(6): 590–599. https://doi.org/10.1016/j.neurobiolaging.2018.10.001
https://doi.org/10.2174/1567205015666171227155510 42. Pennisi G, Ferri R, Lanza G, et al., 2011, Transcranial magnetic
stimulation in alzheimer’s disease: A neurophysiological
35. Bos D, Wolters FJ, Darweesh SKL, et al., 2018, Cerebral small
vessel disease and the risk of dementia: A systematic review marker of cortical hyperexcitability. J Neural Transm
and meta-analysis of population-based evidence. Alzheimers (Vienna), 118(4): 587–598.
Dement, 14(11): 1482–1492. https://doi.org/10.1007/s00702-010-0554-9
https://doi.org/10.1016/j.jalz.2018.04.007 43. Chu CS, Li CT, Brunoni AR, et al., 2021, Cognitive effects
and acceptability of non-invasive brain stimulation on
36. Del Val LP, Cantero JL, Baena D, et al., 2018, Damage
of the temporal lobe and APOE status determine neural alzheimer’s disease and mild cognitive impairment:
compensation in mild cognitive impairment. Cortex, A component network meta-analysis. J Neurol Neurosurg
101: 136–153. Psychiatry, 92(2): 195–203.
https://doi.org/10.1136/jnnp-2020-323870
https://doi.org/10.1016/j.cortex.2018.01.018
44. Wang XQ, Huang WJ, Su L, et al., 2020, Neuroimaging
37. Farrar DC, Mian AZ, Budson AE, et al., 2018, Retained
executive abilities in mild cognitive impairment are advances regarding subjective cognitive decline in preclinical
associated with increased white matter network connectivity. alzheimer’s disease. Mol Neurodegener, 15(1): 27.
Eur Radiol, 28(1): 340–347. https://doi.org/10.1186/s13024-020-00395-3
Volume 1 Issue 3 (2022) 10 https://doi.org/10.36922/an.v1i3.208

