Page 42 - AN-2-3
P. 42
Advanced Neurology Multiple sclerosis: Immunopathogenesis
19. Watanabe M, Nakamura Y, Sato S, et al., 2021, HLA the origins of grey matter damage in multiple sclerosis. Nat
genotype-clinical phenotype correlations in multiple Rev Neurosci, 16: 147–158.
sclerosis and neuromyelitis optica spectrum disorders based https://doi.org/10.1038/nrn3900
on Japan MS/NMOSD Biobank data. Sci Rep, 11: 607.
31. Berghoff SA, Spieth L, Sun T, et al., 2021, Microglia facilitate
https://doi.org/10.1038/s41598-020-79833-7
repair of demyelinated lesions via post-squalene sterol
20. International Multiple Sclerosis Genetics Consortium, synthesis. Nat Neurosci, 24: 47–60.
2019, Multiple sclerosis genomic map implicates peripheral https://doi.org/10.1038/s41593-020-00757-6
immune cells and microglia in susceptibility. Science, 365:
eaav7188. 32. Jäckle K, Zeis T, Schaeren-Wiemers N, et al., 2020, Molecular
signature of slowly expanding lesions in progressive multiple
https://doi.org/10.1126/science.aav7188
sclerosis. Brain, 143: 2073–2088.
21. Fitzgerald KC, Kim K, Smith MD, et al., 2019, Early https://doi.org/10.1093/brain/awaa158
complement genes are associated with visual system
degeneration in multiple sclerosis. Brain, 142: 2722–2736. 33. Campbell G, Mahad DJ, 2018, Mitochondrial dysfunction
and axon degeneration in progressive multiple sclerosis.
https://doi.org/10.1093/brain/awz188
FEBS Lett, 592: 1113–1121.
22. Gresle MM, Jordan MA, Stankovich J, et al., 2020, Multiple https://doi.org/10.1002/1873-3468.13013
sclerosis risk variants regulate gene expression in innate and
adaptive immune cells. Life Sci Alliance, 3: e202000650. 34. Licht-Mayer S, Campbell GR, Canizares M, et al., 2020,
Enhanced axonal response of mitochondria to demyelination
https://doi.org/10.26508/lsa.202000650
offers neuroprotection: Implications for multiple sclerosis.
23. Baecher-Allan C, Kaskow BJ, Weiner HL, 2018, Multiple Acta Neuropathol, 140: 143–167.
sclerosis: Mechanisms and immunotherapy. Neuron, https://doi.org/10.1007/s00401-020-02179-x
97: 742–768.
35. Campbell GR, Worrall JT, Mahad DJ, 2014, The central
https://doi.org/10.1016/j.neuron.2018.01.021
role of mitochondria in axonal degeneration in multiple
24. Heidker RM, Emerson MR, LeVine SM, 2017, Metabolic sclerosis. Mult Scler, 20: 1806–1813.
pathways as possible therapeutic targets for progressive https://doi.org/10.1177/1352458514544537
multiple sclerosis. Neural Regen Res, 12: 1262–1267.
36. Abdelhak A, Hottenrott T, Mayer C, et al., 2017, CSF profile
https://doi.org/10.4103/1673-5374.213542
in primary progressive multiple sclerosis: Re-exploring the
25. Lassmann H, 2018, Pathogenic mechanisms associated basics. PLoS One, 12: e0182647.
with different clinical courses of multiple sclerosis. Front https://doi.org/10.1371/journal.pone.0182647
Immunol, 9: 3116.
37. Lee NJ, Ha SK, Sati P, et al., 2019, Potential role of iron in
https://doi.org/10.3389/fimmu.2018.03116
repair of inflammatory demyelinating lesions. J Clin Invest,
26. Dong Y, Yong VW, 2019, When encephalitogenic T cells 129: 4365–4376.
collaborate with microglia in multiple sclerosis. Nat Rev https://doi.org/10.1172/JCI126809
Neurol, 15: 704–717.
38. Raz E, Branson B, Jensen JH, et al., 2015, Relationship
https://doi.org/10.1038/s41582-019-0253-6
between iron accumulation and white matter injury in
27. Lisak RP, Nedelkoska L, Benjamins JA, et al., 2017, B cells multiple sclerosis: A case-control study. J Neurol, 262:
from patients with multiple sclerosis induce cell death via 402–409.
apoptosis in neurons in vitro. J Neuroimmunol, 309: 88–99.
https://doi.org/10.1007/s00415-014-7569-3
https://doi.org/10.1016/j.jneuroim.2017.05.004
39. Lubetzki C, Zalc B, Williams A, et al., 2020, Remyelination in
28. Mahad DH, Trapp BD, Lassmann H, 2015, Pathological multiple sclerosis: From basic science to clinical translation.
mechanisms in progressive multiple sclerosis. Lancet Neurol, Lancet Neurol, 19: 678–688.
14: 183–193.
https://doi.org/10.1016/S1474-4422(20)30140-X
https://doi.org/10.1016/S1474-4422(14)70256-X
40. Micu I, Plemel JR, Caprariello AV, et al., 2018, Axo-myelinic
29. Sucksdorff M, Matilainen M, Tuisku J, et al., 2020, Brain neurotransmission: A novel mode of cell signalling in the
TSPO-PET predicts later disease progression independent central nervous system. Nat Rev Neurosci, 19: 49–58.
of relapses in multiple sclerosis. Brain, 143: 3318–3330.
https://doi.org/10.1038/nrn.2017.128
https://doi.org/10.1093/brain/awaa275
41. Correale J, Gaitán MI, Ysrraelit MC, et al., 2017, Progressive
30. Calabrese M, Magliozzi R, Ciccarelli O, et al., 2015, Exploring multiple sclerosis: From pathogenic mechanisms to
Volume 2 Issue 3 (2023) 11 https://doi.org/10.36922/an.1319

