Page 42 - AN-2-3
P. 42

Advanced Neurology                                                   Multiple sclerosis: Immunopathogenesis



            19.  Watanabe M, Nakamura Y, Sato S,  et al., 2021, HLA   the origins of grey matter damage in multiple sclerosis. Nat
               genotype-clinical phenotype correlations in multiple   Rev Neurosci, 16: 147–158.
               sclerosis and neuromyelitis optica spectrum disorders based      https://doi.org/10.1038/nrn3900
               on Japan MS/NMOSD Biobank data. Sci Rep, 11: 607.
                                                               31.  Berghoff SA, Spieth L, Sun T, et al., 2021, Microglia facilitate
               https://doi.org/10.1038/s41598-020-79833-7
                                                                  repair  of demyelinated lesions via  post-squalene sterol
            20.  International Multiple Sclerosis Genetics Consortium,   synthesis. Nat Neurosci, 24: 47–60.
               2019, Multiple sclerosis genomic map implicates peripheral      https://doi.org/10.1038/s41593-020-00757-6
               immune cells and microglia in susceptibility. Science, 365:
               eaav7188.                                       32.  Jäckle K, Zeis T, Schaeren-Wiemers N, et al., 2020, Molecular
                                                                  signature of slowly expanding lesions in progressive multiple
               https://doi.org/10.1126/science.aav7188
                                                                  sclerosis. Brain, 143: 2073–2088.
            21.  Fitzgerald KC, Kim K, Smith MD,  et  al., 2019, Early      https://doi.org/10.1093/brain/awaa158
               complement genes are associated with visual system
               degeneration in multiple sclerosis. Brain, 142: 2722–2736.   33.  Campbell G, Mahad DJ, 2018, Mitochondrial dysfunction
                                                                  and axon  degeneration in  progressive  multiple  sclerosis.
               https://doi.org/10.1093/brain/awz188
                                                                  FEBS Lett, 592: 1113–1121.
            22.  Gresle MM, Jordan MA, Stankovich J, et al., 2020, Multiple      https://doi.org/10.1002/1873-3468.13013
               sclerosis risk variants regulate gene expression in innate and
               adaptive immune cells. Life Sci Alliance, 3: e202000650.   34.  Licht-Mayer S, Campbell GR, Canizares M,  et al., 2020,
                                                                  Enhanced axonal response of mitochondria to demyelination
               https://doi.org/10.26508/lsa.202000650
                                                                  offers neuroprotection: Implications for multiple sclerosis.
            23.  Baecher-Allan C, Kaskow BJ, Weiner HL, 2018, Multiple   Acta Neuropathol, 140: 143–167.
               sclerosis: Mechanisms  and immunotherapy.  Neuron,      https://doi.org/10.1007/s00401-020-02179-x
               97: 742–768.
                                                               35.  Campbell GR, Worrall JT, Mahad DJ, 2014, The central
               https://doi.org/10.1016/j.neuron.2018.01.021
                                                                  role of mitochondria in axonal degeneration in multiple
            24.  Heidker  RM, Emerson MR, LeVine SM, 2017, Metabolic   sclerosis. Mult Scler, 20: 1806–1813.
               pathways as possible therapeutic targets for progressive      https://doi.org/10.1177/1352458514544537
               multiple sclerosis. Neural Regen Res, 12: 1262–1267.
                                                               36.  Abdelhak A, Hottenrott T, Mayer C, et al., 2017, CSF profile
               https://doi.org/10.4103/1673-5374.213542
                                                                  in primary progressive multiple sclerosis: Re-exploring the
            25.  Lassmann  H,  2018,  Pathogenic  mechanisms  associated   basics. PLoS One, 12: e0182647.
               with different clinical courses of multiple sclerosis.  Front      https://doi.org/10.1371/journal.pone.0182647
               Immunol, 9: 3116.
                                                               37.  Lee NJ, Ha SK, Sati P, et al., 2019, Potential role of iron in
               https://doi.org/10.3389/fimmu.2018.03116
                                                                  repair of inflammatory demyelinating lesions. J Clin Invest,
            26.  Dong Y, Yong VW, 2019, When encephalitogenic T cells   129: 4365–4376.
               collaborate  with  microglia  in  multiple  sclerosis.  Nat  Rev      https://doi.org/10.1172/JCI126809
               Neurol, 15: 704–717.
                                                               38.  Raz E, Branson B, Jensen JH,  et al., 2015, Relationship
               https://doi.org/10.1038/s41582-019-0253-6
                                                                  between  iron  accumulation  and  white  matter  injury  in
            27.  Lisak RP, Nedelkoska L, Benjamins JA, et al., 2017, B cells   multiple sclerosis: A  case-control study.  J  Neurol, 262: 
               from patients with multiple sclerosis induce cell death via   402–409.
               apoptosis in neurons in vitro. J Neuroimmunol, 309: 88–99.
                                                                  https://doi.org/10.1007/s00415-014-7569-3
               https://doi.org/10.1016/j.jneuroim.2017.05.004
                                                               39.  Lubetzki C, Zalc B, Williams A, et al., 2020, Remyelination in
            28.  Mahad DH, Trapp BD, Lassmann H, 2015, Pathological   multiple sclerosis: From basic science to clinical translation.
               mechanisms in progressive multiple sclerosis. Lancet Neurol,   Lancet Neurol, 19: 678–688.
               14: 183–193.
                                                                  https://doi.org/10.1016/S1474-4422(20)30140-X
               https://doi.org/10.1016/S1474-4422(14)70256-X
                                                               40.  Micu I, Plemel JR, Caprariello AV, et al., 2018, Axo-myelinic
            29.  Sucksdorff M, Matilainen M, Tuisku J,  et al., 2020, Brain   neurotransmission: A novel mode of cell signalling in the
               TSPO-PET predicts later disease progression independent   central nervous system. Nat Rev Neurosci, 19: 49–58.
               of relapses in multiple sclerosis. Brain, 143: 3318–3330.
                                                                  https://doi.org/10.1038/nrn.2017.128
               https://doi.org/10.1093/brain/awaa275
                                                               41.  Correale J, Gaitán MI, Ysrraelit MC, et al., 2017, Progressive
            30.  Calabrese M, Magliozzi R, Ciccarelli O, et al., 2015, Exploring   multiple  sclerosis:  From  pathogenic  mechanisms  to


            Volume 2 Issue 3 (2023)                         11                        https://doi.org/10.36922/an.1319
   37   38   39   40   41   42   43   44   45   46   47