Page 46 - AN-3-4
P. 46

Advanced Neurology                                              Anticoagulants as neuroprotective therapeutics



               USA. 2021;118(33):e2102191118.                     brain disorders and target of rapidly evolving therapeutic
                                                                  strategies. Science. 2021;371(6532):eabb8255.
               doi: 10.1073/pnas.2102191118
            61.  Hultman K, Strickland S, Norris EH. The APOE e4/e4      doi: 10.1126/science.abb8255
               genotype potentiates vascular fibrin(ogen) deposition in   72.  Chen X, Firulyova M, Manis M, et al. Microglia-mediated
               amyloid-laden  vessels  in  the  brains  of  Alzheimer’s  disease   T cell infiltration drives neurodegeneration in tauopathy.
               patients. J Cerebral Blood Flow Metab. 2013;33(8):1251-1258.  Nature. 2023;615(7953):668-677.
               doi: 10.1038/jcbfm.2013.76                         doi: 10.1038/s41586-023-05788-0
            62.  Parhizkar S, Arzberger T, Brendel M, et al. Loss of TREM2   73.  He Z, Guo JL, McBridge JD, et al. Amyloid-β plaques enhance
               function increases amyloid seeding but reduces plaque-  Alzheimer’s brain tau-seeded pathologies by facilitating
               associated ApoE. Nat Neurosci. 2019,22(2):191-204.  neuritic plaque tau aggregation. Nat Med. 2018;241:29-38.
               doi: 10.1038/s41593-018-0296-9                     doi: 10.1038/nm.4443
            63.  Schoch KM, Ezerskiy LA, Morhaus MM, et al. Acute Trem2   74.  Aguilar-Pineda JA, Vera-Lopez KJ, Shrivastava P,  et al.
               reduction triggers increased microglial phagocytosis,   Vascular smooth muscle cell dysfunction contribute to
               slowing amyloid deposition in mice. Proc Natl Acad Sci USA.   neuroinflammation and  tau hyperphosphorylation in
               2021;118(27):e2100356118.                          Alzheimer disease. Science. 2021;24(9):102993.
               doi: 10.1073/pnas.2100356118                       doi: 10.1016/j.isci.2021.102993
            64.  Korte N, Nortley, R, Attwell D. Cerebral blood flow decrease   75.  Kim YA, Mellen M, Kizil C, Santa-Maria I. Mechanisms
               as an early pathological mechanism in Alzheimer’s disease.   linking cerebrovascular dysfunction and tauopathy:
               Acta Neuropath. 2020;140(6):793-810.               Adding a layer of epiregulatory complexity. Br J Pharmacol.
               doi: 10.1007/s00401-020-02215-w                    2024;181(6):879-895.
            65.  Jellinger KA. Alzheimer disease and cerebrovascular      doi: 10.1111/bph.16280
               pathology: An update.  J  Neural Transm  (Vienna).   76.  Onyango I, Jauregui GV, Carna M, Bennett JP Jr., Stokin GB.
               2002;109(5-6):813-836.                             Neuroinflammation in Alzheimer’s disease.  Biomedicines.
               doi: 10.1007/s007020200068                         2021;9(5):524.
            66.  Maier FC, Wehrl HF, Schmid AM, et al. Longitudinal PET-     doi: 10.3390/biomedicines9050524
               MRI  reveals  β-amyloid  deposition and rCBF  dynamics   77.  Grammas P, Samany PG, Thirumangalakudi L. Thrombin
               and connects vascular amyloidosis to quantitative loss of   and inflammatory proteins are elevated in Alzheimer’s
               perfusion. Nat Med. 2014;20(12):1485-1492.         disease microvessels: Implications for disease pathogenesis.
               doi: 10.1038/nm.3734                               J Alzheimers Dis. 2006;9(1):51-58.
            67.  Eisele YS, Obermüller U, Heilbronner G, et al. Peripherally      doi: 10.3233/jad-2006-9105
               applied Abeta-containing inoculates induce cerebral beta-  78.  BartelsT, De Schepper S, Hong S. Microglia modulate
               amyloidosis. Science. 2010;330(6006):980-982.      neurodegeneration in Alzheimer’s and Parkinson’s diseases.
               doi: 10.1126/science.1194516                       Science. 2020;370(6512):66-69.
            68.  Sevigny J, Chiao P, Bussiere T,  et al. The antibody      doi: 10.1126/science.abb8587
               aducanumab reduces Aβ plaques in Alzheimer’s disease.   79.  Butler CA, Popescu AS, Kitchener EJ, Allendorf DH,
               Nature. 2016;537(7618):50-56.                      Puigdellivol M, Brown GC. Microglial phagocytosis
               doi: 10.1038/nature19323                           of neurons in neurodegeneration, and its regulation.
                                                                  J Neurochem. 2021;158(3):621-639.
            69.  Sims JR, Zimmer JA, Evans CD, et al. Donanemab in early
               symptomatic Alzheimer disease: The TRAILBLAZER-ALZ      doi: 10.1111/jnc.15327
               2 randomized clinical trial. JAMA. 2023;330(6):512-527.  80.  Kim SK, Sharma C, Jung UJ, Kim SR. Pathophysiological role
               doi: 10.1001/jama.2023.13239                       of microglial activation induced by blood-borne proteins in
                                                                  Alzheimer’s disease. Biomedicines. 2023;11(5):1383.
            70.  Vukmir RB. Amyloid-related imaging abnormalities (ARIA):
               Diagnosis, management, and care in the setting of amyloid-     doi: 10.3390/biomedicines11051383
               modifying therapy. Ann Clin Transl Neurol. 2024;11:1669-  81.  Venegas C, Kumar S, Franklin BS, et al. Microglia-derived
               1680.                                              ASC specks cross-seed amyloid-β in Alzheimer’s disease.
               doi: 10.1002/acn3.52042                            Nature. 2017;552(7685):355-361.
            71.  Chang CW, Shao E, Mucke L. Tau: Enabler of diverse      doi: 10.1038/nature25158


            Volume 3 Issue 4 (2024)                         28                               doi: 10.36922/an.3799
   41   42   43   44   45   46   47   48   49   50   51