Page 43 - ARNM-3-2
P. 43
Advances in Radiotherapy
& Nuclear Medicine Radiomics for gastric cancer
doi: 10.3892/ol.2017.7385 30. Wang XX, Ding Y, Wang SW, et al. Intratumoral
and peritumoral radiomics analysis for preoperative
20. Ma Z, Fang M, Huang Y, et al. CT-based radiomics signature
for differentiating Borrmann type IV gastric cancer from Lauren classification in gastric cancer. Cancer Imaging.
2020;20(1):83.
primary gastric lymphoma. Eur J Radiol. 2017;91:142-147.
doi: 10.1186/s40644-020-00358-3
doi: 10.1016/j.ejrad.2017.04.007
31. Wang Y, Liu W, Yu Y, et al. Potential value of CT radiomics in
21. Sun YW, Ji CF, Wang H, et al. Differentiating gastric cancer the distinction of intestinal-type gastric adenocarcinomas.
and gastric lymphoma using texture analysis (TA) of Eur Radiol. 2020;30(5):2934-2944.
positron emission tomography (PET). Chin Med J (Engl).
2020;134(4):439-447. doi: 10.1007/s00330-019-06629-3
doi: 10.1097/CM9.0000000000001206 32. Chen T, Wu J, Cui C, et al. CT-based radiomics nomograms
for preoperative prediction of diffuse-type and signet
22. Sun ZQ, Hu SD, Li J, Wang T, Duan SF, Wang J. Radiomics ring cell gastric cancer: A multicenter development and
study for differentiating gastric cancer from gastric stromal validation cohort. J Transl Med. 2022;20(1):38.
tumor based on contrast-enhanced CT images. J Xray Sci
Technol. 2019;27(6):1021-1031. doi: 10.1186/s12967-022-03232-x
doi: 10.3233/XST-190574 33. Edge SB, Byrd DR, Compton CC, et al. AJCC Cancer Staging
Manual. 7 ed. Berlin: Springer; 2009.
th
23. Wang R, Liu H, Liang P, Zhao H, Li L, Gao J. Radiomics
analysis of CT imaging for differentiating gastric 34. Kumagai K, Sano T. Revised points and disputed matters
neuroendocrine carcinomas from gastric adenocarcinomas. in the eighth edition of the TNM staging system for gastric
Eur J Radiol. 2021;138:109662. cancer. Jpn J Clin Oncol. 2021;51(7):1024-1027.
doi: 10.1016/j.ejrad.2021.109662 doi: 10.1093/jjco/hyab069
24. Kim BS, Oh ST, Yook JH, Kim BS. Signet ring cell type and 35. Chen W, Wang S, Dong D, et al. Evaluation of lymph node
other histologic types: Differing clinical course and prognosis metastasis in advanced gastric cancer using magnetic
in T1 gastric cancer. Surgery. 2014;155(6):1030-1035. resonance imaging-based radiomics. Front Oncol. 2019;9:1265.
doi: 10.1016/j.surg.2013.08.016 doi: 10.3389/fonc.2019.01265
25. Van der Post RS, Gullo I, Oliveira C, et al. Histopathological, 36. Jiang Y, Wang W, Chen C, et al. radiomics signature on
molecular, and genetic profile of hereditary diffuse gastric computed tomography imaging: Association with lymph
cancer: Current knowledge and challenges for the future. node metastasis in patients with gastric cancer. Front Oncol.
Adv Exp Med Biol. 2016;908:371-391. 2019;9:340.
doi: 10.1007/978-3-319-41388-4_18 doi: 10.3389/fonc.2019.00340
26. Zhang Y, Chen J, Liu S, et al. Assessment of histological 37. Feng QX, Liu C, Qi L, et al. An intelligent clinical decision support
differentiation in gastric cancers using whole-volume system for preoperative prediction of lymph node metastasis in
histogram analysis of apparent diffusion coefficient maps. gastric cancer. J Am Coll Radiol. 2019;16(7):952-960.
J Magn Reson Imaging. 2017;45(2):440-449. doi: 10.1016/j.jacr.2018.12.017
doi: 10.1002/jmri.25360 38. Wang Y, Liu W, Yu Y, et al. Prediction of the depth of tumor
27. Li Q, Qi L, Feng QX, et al. Machine learning-based invasion in gastric cancer: Potential role of CT radiomics.
computational models derived from large-scale Acad Radiol. 2020;27(8):1077-1084.
radiographic-radiomic images can help predict adverse doi: 10.1016/j.acra.2019.10.020
histopathological status of gastric cancer. Clin Transl
Gastroenterol. 2019;10(10):e00079. 39. Gao X, Ma T, Cui J, et al. A CT-based radiomics model for
prediction of lymph node metastasis in early stage gastric
doi: 10.14309/ctg.0000000000000079 cancer. Acad Radiol. 2021;28(6):e155-e164.
28. Smyth EC, Verheij M, Allum W, et al. Gastric cancer: ESMO doi: 10.1016/j.acra.2020.03.045
clinical practice guidelines for diagnosis, treatment and
follow-up. Ann Oncol. 2016;27(Suppl 5):v38-v49. 40. Gao X, Ma T, Cui J, et al. A radiomics-based model for
prediction of lymph node metastasis in gastric cancer. Eur J
doi: 10.1093/annonc/mdw350 Radiol. 2020;129:109069.
29. Chen YC, Fang WL, Wang RF, et al. Clinicopathological doi: 10.1016/j.ejrad.2020.109069
variation of lauren classification in gastric cancer. Pathol 41. Wang Y, Liu W, Yu Y, et al. CT radiomics nomogram for the
Oncol Res. 2016;22(1):197-202.
preoperative prediction of lymph node metastasis in gastric
doi: 10.1007/s12253-015-9996-6 cancer. Eur Radiol. 2020;30(2):976-986.
Volume 3 Issue 2 (2025) 35 doi: 10.36922/arnm.8350

