Page 43 - ARNM-3-2
P. 43

Advances in Radiotherapy
            & Nuclear Medicine                                                           Radiomics for gastric cancer



               doi: 10.3892/ol.2017.7385                       30.  Wang XX, Ding Y, Wang SW,  et al. Intratumoral
                                                                  and peritumoral radiomics analysis for preoperative
            20.  Ma Z, Fang M, Huang Y, et al. CT-based radiomics signature
               for differentiating Borrmann type  IV gastric cancer from   Lauren classification in gastric cancer.  Cancer Imaging.
                                                                  2020;20(1):83.
               primary gastric lymphoma. Eur J Radiol. 2017;91:142-147.
                                                                  doi: 10.1186/s40644-020-00358-3
               doi: 10.1016/j.ejrad.2017.04.007
                                                               31.  Wang Y, Liu W, Yu Y, et al. Potential value of CT radiomics in
            21.  Sun YW, Ji CF, Wang H, et al. Differentiating gastric cancer   the distinction of intestinal-type gastric adenocarcinomas.
               and gastric lymphoma using texture analysis (TA) of   Eur Radiol. 2020;30(5):2934-2944.
               positron emission tomography (PET).  Chin Med J (Engl).
               2020;134(4):439-447.                               doi: 10.1007/s00330-019-06629-3
               doi: 10.1097/CM9.0000000000001206               32.  Chen T, Wu J, Cui C, et al. CT-based radiomics nomograms
                                                                  for preoperative prediction of diffuse-type and signet
            22.  Sun ZQ, Hu SD, Li J, Wang T, Duan SF, Wang J. Radiomics   ring cell gastric cancer: A  multicenter development and
               study for differentiating gastric cancer from gastric stromal   validation cohort. J Transl Med. 2022;20(1):38.
               tumor based on contrast-enhanced CT images. J Xray Sci
               Technol. 2019;27(6):1021-1031.                     doi: 10.1186/s12967-022-03232-x
               doi: 10.3233/XST-190574                         33.  Edge SB, Byrd DR, Compton CC, et al. AJCC Cancer Staging
                                                                  Manual. 7  ed. Berlin: Springer; 2009.
                                                                          th
            23.  Wang R, Liu H, Liang P, Zhao H, Li L, Gao J. Radiomics
               analysis of CT imaging for differentiating gastric   34.  Kumagai K, Sano T. Revised points and disputed matters
               neuroendocrine carcinomas from gastric adenocarcinomas.   in the eighth edition of the TNM staging system for gastric
               Eur J Radiol. 2021;138:109662.                     cancer. Jpn J Clin Oncol. 2021;51(7):1024-1027.
               doi: 10.1016/j.ejrad.2021.109662                   doi: 10.1093/jjco/hyab069
            24.  Kim BS, Oh ST, Yook JH, Kim BS. Signet ring cell type and   35.  Chen W, Wang S, Dong D, et al. Evaluation of lymph node
               other histologic types: Differing clinical course and prognosis   metastasis in advanced gastric cancer using magnetic
               in T1 gastric cancer. Surgery. 2014;155(6):1030-1035.  resonance imaging-based radiomics. Front Oncol. 2019;9:1265.
               doi: 10.1016/j.surg.2013.08.016                    doi: 10.3389/fonc.2019.01265
            25.  Van der Post RS, Gullo I, Oliveira C, et al. Histopathological,   36.  Jiang Y, Wang W, Chen C,  et al. radiomics signature on
               molecular, and genetic profile of hereditary diffuse gastric   computed  tomography  imaging:  Association  with  lymph
               cancer: Current knowledge and challenges for the future.   node metastasis in patients with gastric cancer. Front Oncol.
               Adv Exp Med Biol. 2016;908:371-391.                2019;9:340.
               doi: 10.1007/978-3-319-41388-4_18                  doi: 10.3389/fonc.2019.00340
            26.  Zhang Y, Chen J, Liu S,  et al. Assessment of histological   37.  Feng QX, Liu C, Qi L, et al. An intelligent clinical decision support
               differentiation in gastric cancers using whole-volume   system for preoperative prediction of lymph node metastasis in
               histogram analysis of apparent diffusion coefficient maps.   gastric cancer. J Am Coll Radiol. 2019;16(7):952-960.
               J Magn Reson Imaging. 2017;45(2):440-449.          doi: 10.1016/j.jacr.2018.12.017
               doi: 10.1002/jmri.25360                         38.  Wang Y, Liu W, Yu Y, et al. Prediction of the depth of tumor
            27.  Li Q, Qi L, Feng QX,  et al. Machine learning-based   invasion in gastric cancer: Potential role of CT radiomics.
               computational  models  derived  from  large-scale  Acad Radiol. 2020;27(8):1077-1084.
               radiographic-radiomic images can help predict adverse      doi: 10.1016/j.acra.2019.10.020
               histopathological status of gastric cancer.  Clin Transl
               Gastroenterol. 2019;10(10):e00079.              39.  Gao X, Ma T, Cui J, et al. A CT-based radiomics model for
                                                                  prediction of lymph node metastasis in early stage gastric
               doi: 10.14309/ctg.0000000000000079                 cancer. Acad Radiol. 2021;28(6):e155-e164.
            28.  Smyth EC, Verheij M, Allum W, et al. Gastric cancer: ESMO      doi: 10.1016/j.acra.2020.03.045
               clinical practice guidelines for  diagnosis,  treatment and
               follow-up. Ann Oncol. 2016;27(Suppl 5):v38-v49.  40.  Gao X, Ma T, Cui J,  et al. A  radiomics-based model for
                                                                  prediction of lymph node metastasis in gastric cancer. Eur J
               doi: 10.1093/annonc/mdw350                         Radiol. 2020;129:109069.
            29.  Chen YC, Fang WL, Wang RF,  et al. Clinicopathological      doi: 10.1016/j.ejrad.2020.109069
               variation of lauren classification in gastric cancer.  Pathol   41.  Wang Y, Liu W, Yu Y, et al. CT radiomics nomogram for the
               Oncol Res. 2016;22(1):197-202.
                                                                  preoperative prediction of lymph node metastasis in gastric
               doi: 10.1007/s12253-015-9996-6                     cancer. Eur Radiol. 2020;30(2):976-986.


            Volume 3 Issue 2 (2025)                         35                             doi: 10.36922/arnm.8350
   38   39   40   41   42   43   44   45   46   47   48