Page 45 - ARNM-3-2
P. 45

Advances in Radiotherapy
            & Nuclear Medicine                                                           Radiomics for gastric cancer



               tomography radiomics features in patients with gastric cancer   III gastric cancer. Front Oncol. 2020;10:552270.
               following curative resection.  Eur Radiol. 2019;29(6):3079-     doi: 10.3389/fonc.2020.552270
               3089.
                                                               72.  Wang N, Wang X, Li W,  et al. Contrast-enhanced CT
               doi: 10.1007/s00330-018-5861-9
                                                                  parameters of gastric adenocarcinoma: Can radiomic
            62.  Li Z, Zhang D, Dai Y, et al. Computed tomography-based   features be surrogate biomarkers for HER2 over-expression
               radiomics for prediction of neoadjuvant chemotherapy   status? Cancer Manag Res. 2020;12:1211-1219.
               outcomes in locally advanced gastric cancer: A pilot study.      doi: 10.2147/CMAR.S230138
               Chin J Cancer Res. 2018;30(4):406-414.
                                                               73.  Wang Y, Yu Y, Han W, et al. CT radiomics for distinction of
               doi: 10.21147/j.issn.1000-9604.2018.04.03          human epidermal growth factor receptor 2 negative gastric
            63.  Sun KY, Hu HT, Chen SL, et al. CT-based radiomics scores   cancer. Acad Radiol. 2021;28(3):e86-e92.
               predict response to neoadjuvant chemotherapy and survival      doi: 10.1016/j.acra.2020.02.018
               in patients with gastric cancer. BMC Cancer. 2020;20(1):468.
                                                               74.  Binnewies M, Roberts EW, Kersten K, et al. Understanding
               doi: 10.1186/s12885-020-06970-7                    the tumor immune microenvironment (TIME) for effective
            64.  Mazzei MA, Di Giacomo L, Bagnacci G,  et al. Delta-  therapy. Nat Med. 2018;24(5):541-550.
               radiomics and response to neoadjuvant treatment in locally      doi: 10.1038/s41591-018-0014-x
               advanced gastric cancer-a multicenter study of GIRCG
               (Italian Research Group for Gastric Cancer). Quant Imaging   75.  Jiang Y, Wang H, Wu J, et al. Noninvasive imaging evaluation
               Med Surg. 2021;11(6):2376-2387.                    of tumor immune microenvironment to predict outcomes
                                                                  in gastric cancer. Ann Oncol. 2020;31(6):760-768.
               doi: 10.21037/qims-20-683
                                                                  doi: 10.1016/j.annonc.2020.03.295
            65.  Xu Q, Sun Z, Li X,  et  al. Advanced gastric cancer: CT
               radiomics prediction and early detection of downstaging with   76.  Lin JX, Lin JP, Weng Y,  et al. Radiographical evaluation
               neoadjuvant chemotherapy.  Eur Radiol. 2021;31(11):8765-  of tumor immunosuppressive microenvironment and
               8774.                                              treatment outcomes in gastric cancer: A  retrospective,
                                                                  multicohort study. Ann Surg Oncol. 2022;29(8):5022-5033.
               doi: 10.1007/s00330-021-07962-2
                                                                  doi: 10.1245/s10434-022-11499-z
            66.  Chen Y, Wei K, Liu D, et al. A machine learning model for
               predicting a major response to neoadjuvant chemotherapy   77.  Gao X, Ma T, Bai S, et al. A CT-based radiomics signature
               in advanced gastric cancer. Front Oncol. 2021;11:675458.  for evaluating tumor infiltrating Treg cells and outcome
                                                                  prediction of gastric cancer. Ann Transl Med. 2020;8(7):469.
               doi: 10.3389/fonc.2021.675458
                                                                  doi: 10.21037/atm.2020.03.114
            67.  Chen Y, Yuan F, Wang L, et al. Evaluation of dual-energy
               CT derived radiomics signatures in predicting outcomes   78.  Li J, Zhang C, Guo  H,  et al. Non-invasive measurement
               in patients with advanced gastric cancer after neoadjuvant   of tumor immune microenvironment and prediction
               chemotherapy. Eur J Surg Oncol. 2022;48(2):339-347.  of survival and chemotherapeutic benefits  from   18 F
                                                                  fluorodeoxyglucose PET/CT images in gastric cancer. Front
               doi: 10.1016/j.ejso.2021.07.014                    Immunol. 2022;13:1019386.
            68.  Shin J, Lim JS, Huh YM, et al. A radiomics-based model for      doi: 10.3389/fimmu.2022.1019386
               predicting prognosis of locally advanced gastric cancer in
               the preoperative setting. Sci Rep. 2021;11(1):1879.  79.  Avanzo M, Wei L, Stancanello J,  et al. Machine and
                                                                  deep learning methods for radiomics.  Med Phys.
               doi: 10.1038/s41598-021-81408-z                    2020;47(5):e185-e202.
            69.  Tan Z. Recent advances in the surgical treatment of advanced      doi: 10.1002/mp.13678
               gastric cancer: A review. Med Sci Monit. 2019;25:3537-3541.
                                                               80.  Zhang L, Dong D, Zhang W,  et al. A  deep learning risk
               doi: 10.12659/MSM.916475                           prediction model for overall survival in patients with
            70.  Klaassen R, Larue RTH, Mearadji B, et al. Feasibility of CT   gastric cancer: A  multicenter study.  Radiother  Oncol.
               radiomics to predict treatment response of individual liver   2020;150:73-80.
               metastases in esophagogastric cancer patients.  PLoS One.      doi: 10.1016/j.radonc.2020.06.010
               2018;13(11):e0207362.
                                                               81.  Tan JW, Wang L, Chen Y, et al. Predicting chemotherapeutic
               doi: 10.1371/journal.pone.0207362                  response for far-advanced gastric cancer by radiomics with
                                                                  deep learning semi-automatic segmentation.  J  Cancer.
            71.  Li J, Zhang C, Wei J,  et al. Intratumoral and peritumoral
               radiomics of contrast-enhanced CT for prediction of   2020;11(24):7224-7236.
               disease-free survival and chemotherapy response in stage II/     doi: 10.7150/jca.46704


            Volume 3 Issue 2 (2025)                         37                             doi: 10.36922/arnm.8350
   40   41   42   43   44   45   46   47   48   49   50