Page 45 - ARNM-3-2
P. 45
Advances in Radiotherapy
& Nuclear Medicine Radiomics for gastric cancer
tomography radiomics features in patients with gastric cancer III gastric cancer. Front Oncol. 2020;10:552270.
following curative resection. Eur Radiol. 2019;29(6):3079- doi: 10.3389/fonc.2020.552270
3089.
72. Wang N, Wang X, Li W, et al. Contrast-enhanced CT
doi: 10.1007/s00330-018-5861-9
parameters of gastric adenocarcinoma: Can radiomic
62. Li Z, Zhang D, Dai Y, et al. Computed tomography-based features be surrogate biomarkers for HER2 over-expression
radiomics for prediction of neoadjuvant chemotherapy status? Cancer Manag Res. 2020;12:1211-1219.
outcomes in locally advanced gastric cancer: A pilot study. doi: 10.2147/CMAR.S230138
Chin J Cancer Res. 2018;30(4):406-414.
73. Wang Y, Yu Y, Han W, et al. CT radiomics for distinction of
doi: 10.21147/j.issn.1000-9604.2018.04.03 human epidermal growth factor receptor 2 negative gastric
63. Sun KY, Hu HT, Chen SL, et al. CT-based radiomics scores cancer. Acad Radiol. 2021;28(3):e86-e92.
predict response to neoadjuvant chemotherapy and survival doi: 10.1016/j.acra.2020.02.018
in patients with gastric cancer. BMC Cancer. 2020;20(1):468.
74. Binnewies M, Roberts EW, Kersten K, et al. Understanding
doi: 10.1186/s12885-020-06970-7 the tumor immune microenvironment (TIME) for effective
64. Mazzei MA, Di Giacomo L, Bagnacci G, et al. Delta- therapy. Nat Med. 2018;24(5):541-550.
radiomics and response to neoadjuvant treatment in locally doi: 10.1038/s41591-018-0014-x
advanced gastric cancer-a multicenter study of GIRCG
(Italian Research Group for Gastric Cancer). Quant Imaging 75. Jiang Y, Wang H, Wu J, et al. Noninvasive imaging evaluation
Med Surg. 2021;11(6):2376-2387. of tumor immune microenvironment to predict outcomes
in gastric cancer. Ann Oncol. 2020;31(6):760-768.
doi: 10.21037/qims-20-683
doi: 10.1016/j.annonc.2020.03.295
65. Xu Q, Sun Z, Li X, et al. Advanced gastric cancer: CT
radiomics prediction and early detection of downstaging with 76. Lin JX, Lin JP, Weng Y, et al. Radiographical evaluation
neoadjuvant chemotherapy. Eur Radiol. 2021;31(11):8765- of tumor immunosuppressive microenvironment and
8774. treatment outcomes in gastric cancer: A retrospective,
multicohort study. Ann Surg Oncol. 2022;29(8):5022-5033.
doi: 10.1007/s00330-021-07962-2
doi: 10.1245/s10434-022-11499-z
66. Chen Y, Wei K, Liu D, et al. A machine learning model for
predicting a major response to neoadjuvant chemotherapy 77. Gao X, Ma T, Bai S, et al. A CT-based radiomics signature
in advanced gastric cancer. Front Oncol. 2021;11:675458. for evaluating tumor infiltrating Treg cells and outcome
prediction of gastric cancer. Ann Transl Med. 2020;8(7):469.
doi: 10.3389/fonc.2021.675458
doi: 10.21037/atm.2020.03.114
67. Chen Y, Yuan F, Wang L, et al. Evaluation of dual-energy
CT derived radiomics signatures in predicting outcomes 78. Li J, Zhang C, Guo H, et al. Non-invasive measurement
in patients with advanced gastric cancer after neoadjuvant of tumor immune microenvironment and prediction
chemotherapy. Eur J Surg Oncol. 2022;48(2):339-347. of survival and chemotherapeutic benefits from 18 F
fluorodeoxyglucose PET/CT images in gastric cancer. Front
doi: 10.1016/j.ejso.2021.07.014 Immunol. 2022;13:1019386.
68. Shin J, Lim JS, Huh YM, et al. A radiomics-based model for doi: 10.3389/fimmu.2022.1019386
predicting prognosis of locally advanced gastric cancer in
the preoperative setting. Sci Rep. 2021;11(1):1879. 79. Avanzo M, Wei L, Stancanello J, et al. Machine and
deep learning methods for radiomics. Med Phys.
doi: 10.1038/s41598-021-81408-z 2020;47(5):e185-e202.
69. Tan Z. Recent advances in the surgical treatment of advanced doi: 10.1002/mp.13678
gastric cancer: A review. Med Sci Monit. 2019;25:3537-3541.
80. Zhang L, Dong D, Zhang W, et al. A deep learning risk
doi: 10.12659/MSM.916475 prediction model for overall survival in patients with
70. Klaassen R, Larue RTH, Mearadji B, et al. Feasibility of CT gastric cancer: A multicenter study. Radiother Oncol.
radiomics to predict treatment response of individual liver 2020;150:73-80.
metastases in esophagogastric cancer patients. PLoS One. doi: 10.1016/j.radonc.2020.06.010
2018;13(11):e0207362.
81. Tan JW, Wang L, Chen Y, et al. Predicting chemotherapeutic
doi: 10.1371/journal.pone.0207362 response for far-advanced gastric cancer by radiomics with
deep learning semi-automatic segmentation. J Cancer.
71. Li J, Zhang C, Wei J, et al. Intratumoral and peritumoral
radiomics of contrast-enhanced CT for prediction of 2020;11(24):7224-7236.
disease-free survival and chemotherapy response in stage II/ doi: 10.7150/jca.46704
Volume 3 Issue 2 (2025) 37 doi: 10.36922/arnm.8350

