Page 44 - ARNM-3-2
P. 44

Advances in Radiotherapy
            & Nuclear Medicine                                                           Radiomics for gastric cancer



               doi: 10.1007/s00330-019-06398-z                    analysis for predicting lymphovascular and perineural
                                                                  invasion. Diagn Interv Radiol. 2020;26(6):515-522.
            42.  Yardimci AH, Sel I, Bektas CT, et al. Computed tomography
               texture analysis in patients with gastric cancer: A quantitative      doi: 10.5152/dir.2020.19507
               imaging biomarker for preoperative evaluation before   52.  Zheng H, Zheng Q, Jiang M, et al. Contrast-enhanced CT
               neoadjuvant chemotherapy treatment.  Jpn J Radiol.   based radiomics in the preoperative prediction of perineural
               2020;38(6):553-560.
                                                                  invasion for patients with gastric cancer.  Eur  J  Radiol.
               doi: 10.1007/s11604-020-00936-2                    2022;154:110393.
            43.  Yang J, Wu  Q, Xu L,  et al. Integrating tumor and nodal      doi: 10.1016/j.ejrad.2022.110393
               radiomics to predict lymph node metastasis in gastric   53.  Fan L, Li J, Zhang H, et al. Machine learning analysis for
               cancer. Radiother Oncol. 2020;150:89-96.           the  noninvasive  prediction  of  lymphovascular  invasion
               doi: 10.1016/j.radonc.2020.06.004                  in gastric cancer using PET/CT and enhanced CT-based
                                                                  radiomics and clinical variables.  Abdom Radiol (NY).
            44.  Wang L, Gong J, Huang X,  et al. CT-based radiomics   2022;47(4):1209-1222.
               nomogram for  preoperative prediction  of No.10  lymph
               nodes metastasis in advanced proximal gastric cancer. Eur J      doi: 10.1007/s00261-021-03315-1
               Surg Oncol. 2021;47(6):1458-1465.               54.  Yang L, Chu W, Li M, et al. Radiomics in gastric cancer: First
               doi: 10.1016/j.ejso.2020.11.132                    clinical investigation to predict lymph vascular invasion and
                                                                  survival outcome using  F-FDG PET/CT images.  Front
                                                                                     18
            45.  Sun Z, Jiang Y, Chen C, et al. Radiomics signature based   Oncol. 2022;12:836098.
               on  computed tomography images for  the  preoperative
               prediction of lymph node metastasis at individual stations      doi: 10.3389/fonc.2022.836098
               in gastric cancer: A  multicenter study.  Radiother Oncol.   55.  Bando E, Makuuchi R, Tokunaga M, Tanizawa Y,
               2021;165:179-190.                                  Kawamura T, Terashima M. Impact of clinical tumor-node-
               doi: 10.1016/j.radonc.2021.11.003                  metastasis staging on survival in gastric carcinoma patients
                                                                  receiving surgery. Gastric Cancer. 2017;20(3):448-456.
            46.  Wang X, Li C, Fang M,  et al. Integrating No.3 lymph
               nodes  and  primary  tumor  radiomics  to  predict  lymph      doi: 10.1007/s10120-016-0637-x
               node metastasis in T1-2 gastric cancer. BMC Med Imaging.   56.  Sohn BH, Hwang JE, Jang HJ,  et al. Clinical significance
               2021;21(1):58.                                     of four molecular subtypes of gastric cancer identified
               doi: 10.1186/s12880-021-00587-3                    by the cancer genome atlas project.  Clin Cancer Res.
                                                                  2017;23(15):4441-4449.
            47.  Liu Q, Li J, Xin B, et al. 18F-FDG PET/CT radiomics for
               preoperative prediction of lymph node metastases and      doi: 10.1158/1078-0432.CCR-16-2211
               nodal staging in gastric cancer. Front Oncol. 2021;11:723345.  57.  Bortolotto C, Lancia A, Stelitano C, et al. Radiomics features
               doi: 10.3389/fonc.2021.723345                      as predictive and prognostic biomarkers in NSCLC. Expert
                                                                  Rev Anticancer Ther. 2021;21(3):257-266.
            48.  Xue XQ, Yu WJ, Shao XL, et al. Radiomics model based on
               preoperative 18F-fluorodeoxyglucose PET predicts N2-3b      doi: 10.1080/14737140.2021.1852935
               lymph node metastasis in gastric cancer patients. Nucl Med   58.  Giganti F, Antunes S, Salerno A, et al. Gastric cancer: Texture
               Commun. 2022;43(3):340-349.                        analysis from multidetector computed tomography as a
               doi: 10.1097/MNM.0000000000001523                  potential preoperative prognostic biomarker.  Eur Radiol.
                                                                  2017;27(5):1831-1839.
            49.  Montagnani F, Crivelli F, Aprile G, et al. Long-term survival
               after liver metastasectomy in gastric cancer: Systematic      doi: 10.1007/s00330-016-4540-y
               review and meta-analysis of prognostic factors. Cancer Treat   59.  Wang X, Sun J, Zhang W, et al. Use of radiomics to extract
               Rev. 2018;69:11-20.                                splenic features to predict prognosis of patients with gastric
               doi: 10.1016/j.ctrv.2018.05.010                    cancer. Eur J Surg Oncol. 2020;46(10 Pt A):1932-1940.
                                                                  doi: 10.1016/j.ejso.2020.06.021
            50.  Chen X, Yang Z, Yang J, et al. Radiomics analysis of contrast-
               enhanced CT predicts lymphovascular invasion and disease   60.  Wang S, Feng C, Dong D,  et al. Preoperative computed
               outcome in gastric cancer: A  preliminary study.  Cancer   tomography-guided disease-free survival prediction in
               Imaging. 2020;20(1):24.                            gastric cancer: A  multicenter radiomics study.  Med Phys.
               doi: 10.1186/s40644-020-00302-5                    2020;47(10):4862-4871.
                                                                  doi: 10.1002/mp.14350
            51.  Yardımcı AH, Koçak B, Turan Bektaş C, et al. Tubular gastric
               adenocarcinoma: Machine learning-based CT texture   61.  Li W, Zhang L, Tian C, et al. Prognostic value of computed


            Volume 3 Issue 2 (2025)                         36                             doi: 10.36922/arnm.8350
   39   40   41   42   43   44   45   46   47   48   49