Page 58 - ARNM-3-2
P. 58
Advances in Radiotherapy
& Nuclear Medicine Shielding exaggeration in medical linac bunkers
in radiotherapy units – how to use it, and the purpose of doi: 10.1118/1.3554643
its use – followed by necessary recommendations to ensure 6. Dzierma Y, Licht N, Nuesken F, Ruebe C. Beam properties
achieving an actual balance between the cost of shielding and stability of a flattening-filter free 7 MV beam-an
barriers and the expected equivalent personal doses behind overview. Med Phys. 2012;39(5):2595-2602.
these barriers. The experimental validation of the shielding doi: 10.1118/1.3703835
calculations presented in this study will be reported in a
separate article. 7. Hrbacek J, Lang S, Klöck S. Commissioning of photon beams
of a flattening filter-free linear accelerator and the accuracy
Acknowledgments of beam modeling using an anisotropic analytical algorithm.
Int J Radiat Oncol Biol Phys. 2011;80(4):1228-1237.
None.
doi: 10.1016/j.ijrobp.2010.09.050
Funding 8. Kragl G, Albrich D, Georg D. Radiation therapy with
None. unflattened photon beams: Dosimetric accuracy of
advanced dose calculation algorithms. Radiother Oncol.
Conflict of interest 2011;100(3):417-423.
The author declares he has no competing interests. doi: 10.1016/j.radonc.2011.09.001
9. Lang S, Reggiori G, Puxeu Vaquee J, et al. Pretreatment
Author contributions quality assurance of flattening filter free beams on
This is a single-authored article. 224 patients for intensity modulated plans: A multicentric
study. Med Phys. 2012;39(3):1351-1356.
Ethics approval and consent to participate doi: 10.1118/1.3685461
Not applicable. 10. Paynter D, Weston SJ, Cosgrove VP, Evans JA, Thwaites DI.
Beam characteristics of energy-matched flattening filter free
Consent for publication beams. Med Phys. 2014;41(5):052103.
Not applicable. doi: 10.1118/1.4871615
Availability of data 11. Xiao Y, Kry SF, Popple R, et al. Flattening filter-free
accelerators: A report from the AAPM Therapy Emerging
All data are presented within the manuscript. Technology Assessment Work Group. J Appl Clin Med Phys.
2015;16(3):5219.
References
doi: 10.1120/jacmp.v16i3.5219
1. Jeraj R, Mackie TR, Balog J, et al. Radiation characteristics of
helical tomotherapy. Med Phys. 2004;31(2):396-404. 12. Budgell G, Brown K, Cashmore J, et al. IPEM topical report
1: guidance on implementing flattening filter free (FFF)
doi: 10.1118/1.1639148 radiotherapy. Phys Med Biol. 2016;61(23):8360-8394.
2. Vassiliev ON, Titt U, Pönisch F, Kry SF, Mohan R, doi: 10.1088/0031-9155/61/23/8360
Gillin MT. Dosimetric properties of photon beams from
a flattening filter free clinical accelerator. Phys Med Biol. 13. Dalaryd M, Kragl G, Ceberg C, et al. A Monte Carlo study
2006;51(7):1907-17. of a flattening filter-free linear accelerator verified with
measurements. Phys Med Biol. 2010;55(23):7333-7344.
doi: 10.1088/0031-9155/51/7/019
doi: 10.1088/0031-9155/55/23/010
3. Cashmore J. The characterization of unflattened photon
beams from a 6 MV linear accelerator. Phys Med Biol. 14. Georg D, Kragl G, Wetterstedt S, McCavana P, McClean B,
2008;53(7):1933-1946. Knöös T. Photon beam quality variations of a flattening filter
free linear accelerator. Med Phys. 2010;37(1):49-53.
doi: 10.1088/0031-9155/53/7/009
doi: 10.1118/1.3264617
4. Kragl G, Af Wetterstedt S, Knäusl B, et al. Dosimetric
characteristics of 6 and 10MV unflattened photon beams. 15. Kragl G, Baier F, Lutz S, Albrich D, et al. Flattening filter
Radiother Oncol. 2009;93(1):141-146. free beams in SBRT and IMRT: Dosimetric assessment of
peripheral doses. Z Med Phys. 2011;21(2):91-101.
doi: 10.1016/j.radonc.2009.06.008
doi: 10.1016/j.zemedi.2010.07.003
5. Georg D, Knöös T, McClean B. Current status and future
perspective of flattening filter free photon beams. Med Phys. 16. Almberg SS, Frengen J, Lindmo T. Monte Carlo study of
2011;38(3):1280-1293. in-field and out-of-field dose distributions from a linear
Volume 3 Issue 2 (2025) 50 doi: 10.36922/ARNM025070007

